Home
Class 12
MATHS
If x = 1 + 3a + 6a^2 + 10 a^3 + ……" to "...

If `x = 1 + 3a + 6a^2 + 10 a^3 + ……" to " oo` terms `|a| lt 1, y = 1+4a+10a^2 + 20a^3 + ….." to " oo` terms, `|a| lt 1`, then x:y

A

`(1 - a):1`

B

`1:(1 - a)`

C

`(1+a):1`

D

`1:(1+a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( \frac{x}{y} \) where: \[ x = 1 + 3a + 6a^2 + 10a^3 + \ldots \] \[ y = 1 + 4a + 10a^2 + 20a^3 + \ldots \] ### Step 1: Finding \( x \) We start with the series for \( x \): \[ x = 1 + 3a + 6a^2 + 10a^3 + \ldots \] Notice that the coefficients \( 1, 3, 6, 10, \ldots \) are the triangular numbers, which can be expressed as \( T_n = \frac{n(n+1)}{2} \). Thus, we can rewrite \( x \) as: \[ x = \sum_{n=0}^{\infty} T_n a^n \] ### Step 2: Relating \( x \) to a simpler series We can express \( T_n \) in terms of sums: \[ T_n = \sum_{k=1}^{n} k \] So, we can express \( x \) as: \[ x = \sum_{n=0}^{\infty} \left( \sum_{k=1}^{n} k \right) a^n \] Now, we can manipulate this series. Multiply \( x \) by \( a \): \[ ax = a + 3a^2 + 6a^3 + 10a^4 + \ldots \] ### Step 3: Subtracting the two series Subtract \( ax \) from \( x \): \[ x - ax = 1 + (3a - a) + (6a^2 - 3a^2) + (10a^3 - 6a^3) + \ldots \] \[ x(1 - a) = 1 + 2a + 3a^2 + 4a^3 + \ldots \] The right-hand side is a known series: \[ 1 + 2a + 3a^2 + 4a^3 + \ldots = \frac{1}{(1-a)^2} \] Thus, we have: \[ x(1 - a) = \frac{1}{(1-a)^2} \] \[ x = \frac{1}{(1-a)^3} \] ### Step 4: Finding \( y \) Now we analyze \( y \): \[ y = 1 + 4a + 10a^2 + 20a^3 + \ldots \] The coefficients \( 1, 4, 10, 20, \ldots \) can be expressed as \( \frac{n(n+1)}{2} + n \), which leads us to: \[ y = \sum_{n=0}^{\infty} \left( \frac{n(n+1)}{2} + n \right) a^n \] ### Step 5: Relating \( y \) to a simpler series Similar to \( x \), we can express \( y \) as: \[ y = \sum_{n=0}^{\infty} T_n a^n + \sum_{n=0}^{\infty} n a^n \] The second series \( \sum_{n=0}^{\infty} n a^n = \frac{a}{(1-a)^2} \). Thus, we have: \[ y = \frac{1}{(1-a)^3} + \frac{a}{(1-a)^2} \] ### Step 6: Finding the ratio \( \frac{x}{y} \) Now we can find the ratio: \[ \frac{x}{y} = \frac{\frac{1}{(1-a)^3}}{\frac{1}{(1-a)^3} + \frac{a}{(1-a)^2}} \] Simplifying this gives: \[ \frac{x}{y} = \frac{1}{1 + a(1-a)} \] \[ = \frac{1}{1 - a + a^2} \] ### Final Result Thus, the ratio \( x:y \) is: \[ \frac{x}{y} = \frac{1}{1-a} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate :1 + 3x + 6x ^(2) + 10 x ^(3)+……. upto infinite term, whre |x| lt 1.

1 + ""^2C_1x + ""^3C_2 x^2+ ""^4C_3 x^3 + ….. to oo terms can be summed up if

Evaluate : 1^(2) + 2 ^(2) x + 3 ^(2) x ^(2) + 4 ^(2) x ^(3) …….. upto infinite terms for |x| lt 1.

Let x=1+3a+6a^2+10 a^3+ ,|a|<1. y=1+4b+10 b^2+20 b^3+ ,|b|<1. Find S+1+3(a b)+5(a b)^2+ in terms of xa n dydot

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

If |alpha|lt1,|beta|lt1 1-alpha+alpha^(2)-alpha^(3)+ . . . . ."to "oo=s_(1) 1-beta+beta^(2)-beta^(3)+ . . . ."to "oo=s_(2) , then 1-alphabeta+alpha^(2)beta^(2)+ . . . . ."to "oo equals

If y= 1+ x + (x^2)/( 2!) + (x^3)/( 3!) + (x^4)/(4!) +…. to oo , show that (dy)/( dx) = y .

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

3(1 - x ) lt 2 (x + 4)

If x=1+a+a^(2)+...oo, a lt 1 and y=1+b+b^(2)+...oo, b lt 1, then 1+ab+a^(2)b^(2)+...oo :