Home
Class 12
MATHS
If x = (1*3)/(3*6)+(1*3*5)/(3*6*9)+(1*3*...

If `x = (1*3)/(3*6)+(1*3*5)/(3*6*9)+(1*3*5*7)/(3*6*9*12)+. . . ` to infinite terms, then `9x^(2) + 24 x = `

A

11

B

21

C

31

D

41

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the series and derive the value of \( x \) first, and then use that to find \( 9x^2 + 24x \). ### Step 1: Define the series The series is given as: \[ x = \frac{1 \cdot 3}{3 \cdot 6} + \frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9} + \frac{1 \cdot 3 \cdot 5 \cdot 7}{3 \cdot 6 \cdot 9 \cdot 12} + \ldots \] ### Step 2: Rewrite the terms Notice that the general term can be expressed as: \[ \frac{(2n-1)!!}{(3n)!!} \] where \( n!! \) denotes the double factorial. The double factorial of an odd number can be expressed as: \[ (2n-1)!! = \frac{(2n)!}{2^n n!} \] and for the even numbers: \[ (3n)!! = 3^n n! \] ### Step 3: Recognize the pattern The series can be simplified using the binomial series expansion. The series resembles the expansion of: \[ (1 - t)^{-1/2} = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} \frac{t^n}{4^n} \] for \( t = \frac{1}{3} \). ### Step 4: Find the value of \( x \) Using the series expansion, we can write: \[ x = \frac{1}{3} \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} \left(\frac{1}{3}\right)^n \] This is equal to: \[ x = \frac{1}{3} (1 - \frac{1}{3})^{-1/2} = \frac{1}{3} \left(\frac{2}{3}\right)^{-1/2} = \frac{1}{3} \cdot \sqrt{\frac{9}{2}} = \frac{3}{\sqrt{2} \cdot 3} = \frac{1}{\sqrt{2}} \] ### Step 5: Substitute \( x \) into the expression Now we need to find \( 9x^2 + 24x \): \[ x^2 = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] \[ 9x^2 = 9 \cdot \frac{1}{2} = \frac{9}{2} \] \[ 24x = 24 \cdot \frac{1}{\sqrt{2}} = \frac{24\sqrt{2}}{2} = 12\sqrt{2} \] ### Step 6: Combine the results Now we combine: \[ 9x^2 + 24x = \frac{9}{2} + 12\sqrt{2} \] ### Step 7: Solve for the final value To find a numerical approximation, we can calculate \( 12\sqrt{2} \): \[ \sqrt{2} \approx 1.414 \Rightarrow 12\sqrt{2} \approx 12 \times 1.414 \approx 16.968 \] Thus: \[ 9x^2 + 24x \approx \frac{9}{2} + 16.968 \approx 4.5 + 16.968 \approx 21.468 \] ### Final Result The final value of \( 9x^2 + 24x \) is approximately \( 21 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = (1.3)/(3.6) + (1.3.5)/(3.6.9) + (1.3.5.7)/(3.6.9.12) + ….. then prove that 9x^2 + 24x = 11

Sho that 3/6 + (3.5)/(6.9) + (3.5.7)/(6.9.12)+ ……..oo 3 sqrt3 - 4

Show that 1 + 1/3 + (1.3)/(3.6) + (1.3.5)/(3.6.9) + ….. = sqrt3

If 3x + (1)/(3x) = 3 , find : (i) 9x^(2) + (1)/(9x^2)

If 3x - (1)/(3x ) =5 , find : (i) 9x^(2) + (1)/( 9x^2)

Show that sqrt3 =1+ 1/3 +( 1/3 ).( 3/6 )+(1/3)*((3/6)*(5/9)*(7/12)+.......

For x in(0,1) arrange f_(1)(x) = (1)/(9-x^(2)), f_(2)(x) = (1)/(9-2x^(2)) and f_(3)(x) = (1)/(9-x^(2)-x^(3)) in ascending order and hence prove that 1/6 ln2 lt int_(0)^(1)(1)/(9-x^(2)-x^(3)) dx lt (1)/(6sqrt(2)) ln 5 .

Evaluate the definite integrals int1 2(4x^3-5x^2+6x+9)dx

Evaluate: |(1)/(3)-(3)/(5)|+|(2)/(9)xx(3)/(4)|-|(5)/(6)-(2)/(3)|

If 7/9x -1/6 x =1/3 +1/2, what is the value of x ?