Home
Class 12
MATHS
1-(1)/(5)+(1.4)/(5.10) - (1.5.7)/(5.10.1...

`1-(1)/(5)+(1.4)/(5.10) - (1.5.7)/(5.10.15)+…..=`

A

`1/3 root(3)(5)`

B

`1/2 root(3)(5)`

C

`1/2root(3)(4)`

D

`root(3)(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = 1 - \frac{1}{5} + \frac{1 \cdot 4}{5 \cdot 10} - \frac{1 \cdot 5 \cdot 7}{5 \cdot 10 \cdot 15} + \ldots \), we can analyze the pattern of the series and express it in a more manageable form. ### Step 1: Identify the terms of the series The series can be rewritten as: \[ S = 1 - \frac{1}{5} + \frac{1 \cdot 4}{5 \cdot 10} - \frac{1 \cdot 5 \cdot 7}{5 \cdot 10 \cdot 15} + \ldots \] ### Step 2: Recognize the pattern The general term of the series can be expressed as: \[ (-1)^n \frac{1 \cdot 4 \cdot (3n - 2)}{5^n \cdot n!} \] where \( n \) starts from 0. ### Step 3: Relate the series to a known function This series resembles the expansion of \( (1 - x)^{-k} \) for some \( k \). We can use the binomial series expansion: \[ (1 - x)^{-k} = \sum_{n=0}^{\infty} \frac{(k+n-1)!}{(k-1)!n!} x^n \] ### Step 4: Find the appropriate \( k \) and \( x \) In our case, we can relate: \[ x = \frac{1}{5} \quad \text{and} \quad k = \frac{1}{3} \] ### Step 5: Substitute into the binomial expansion Using the binomial expansion: \[ (1 - x)^{-k} = (1 - \frac{1}{5})^{-\frac{1}{3}} = \left(\frac{4}{5}\right)^{-\frac{1}{3}} = \left(\frac{5}{4}\right)^{\frac{1}{3}} \] ### Step 6: Simplify the expression Now we can express the series sum as: \[ S = \left(\frac{5}{4}\right)^{\frac{1}{3}} \] ### Step 7: Final simplification To express \( S \) in a more standard form: \[ S = \frac{\sqrt[3]{5}}{2} \] ### Conclusion Thus, the sum of the series is: \[ S = \frac{1}{2} \sqrt[3]{5} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(1)/(5)+(1.3)/(5.10)+(1.3.5)/(5.10.15)+….oo then find 3x^(2)+6x.

Show that (3.5)/(5.10) + (3.5.7)/(5.10.15) + (3.5.7.9)/(5.10.15.20)+ …..oo = (5sqrt5)/(3 sqrt3) - 8/5

The probability that a marksman will hit a target is given is 1/5. Then the probability that at least once hit in 10 shots is 1-(4//5)^(10) b. 1//5^(10) c. 1-(1//5)^(10) d. (4//5)^(10)

The n ^(th) terms of the series 1 + (4)/(5) + (7)/(5 ^(2)) + (10)/(5 ^(3)) +………. is

Simplify : i. (1 (5)/(7) xx (7)/(10) ) - ((3)/(5) div (9)/(10))

Evaluate: (2)/(7) of ((1)/(10) div 6 (1)/(5) )

Evaluate : (i) (12!)/(10!) (ii) (14!)/(10!5!) (iii) (1)/(4!)+(1)/(5!)+(1)/(6!)+(1)/(7!)

Find the sum of the infinite series (7)/(5)(1+(1)/(10^(2))+(1.3)/(1.2).(1)/(10^(4))+(1.3.5)/(1.2.3).(1)/(10^(6))+....)

(1/4)^(-10)xx(2/5)^(-10)

The value of the determinant |(-(2^5 + 1)^2,2^10 -1,1/(2^5-1)),(2^10-1,-(2^5-1)^2,1/(2^5+1)),(1/(2^5-1),(1/(2^5+1),-1/(2^10-1)^2) )|