Home
Class 12
MATHS
solve intcot(x/3)dx...

solve `intcot(x/3)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cot\left(\frac{x}{3}\right) dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \frac{x}{3} \). Then, we differentiate both sides to find \( dx \): \[ dt = \frac{1}{3} dx \quad \Rightarrow \quad dx = 3 dt \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ \int \cot\left(\frac{x}{3}\right) dx = \int \cot(t) \cdot 3 dt = 3 \int \cot(t) dt \] ### Step 3: Integrate \( \cot(t) \) The integral of \( \cot(t) \) is known: \[ \int \cot(t) dt = \ln|\sin(t)| + C \] Thus, \[ 3 \int \cot(t) dt = 3 \left( \ln|\sin(t)| + C \right) = 3 \ln|\sin(t)| + 3C \] ### Step 4: Substitute Back for \( t \) Now, substituting back \( t = \frac{x}{3} \): \[ 3 \ln|\sin(t)| + 3C = 3 \ln|\sin\left(\frac{x}{3}\right)| + C' \] where \( C' = 3C \) is just a constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int \cot\left(\frac{x}{3}\right) dx = 3 \ln|\sin\left(\frac{x}{3}\right)| + C \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

solve intcoses(7x)dx

solve intsin(x/2)dx

solve inttan(3x)dx

solve int2^(3x+4)dx

solve int a^(x+2)dx

solve int(6x+9)dx =

intcot^4x dx

intcot^4x dx

solve int(x^(3)+6x^(2)+7)dx

solve int(x^(2)+6/x)dx