Home
Class 12
MATHS
If the eccentric angles of the extremiti...

If the eccentric angles of the extremities of a focal chord of an ellipse `x^2/a^2 + y^2/b^2 = 1` are `alpha and beta`, then (A) `e = (cos alpha + cos beta)/(cos (alpha + beta)) `(B) `e= (sin alpha + sin beta)/(sin(alpha + beta))` (C) `cos((alpha-beta)/(2)) = e cos ((alpha + beta)/(2))` (D) `tan alpha/2.tan beta/2 = (e-1)/(e+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

If alpha and beta are the eccentric angles of the extremities of a focal chord of an ellipse, then prove that the eccentricity of the ellipse is (sinalpha+sinbeta)/("sin"(alpha+beta))

If cos(alpha+beta)=0 then sin(alpha+2beta)=

Show that: sin^2 alpha + sin^2 beta + 2sinalpha sinbeta cos(alpha+beta)=sin^2 (alpha+beta)

If x =cos alpha+cos beta-cos(alpha+beta) and y=4 sin.(alpha)/(2)sin.(beta)/(2)cos.((alpha+beta)/(2)) , then (x-y) equals

If sin alpha + sin beta=a and cos alpha+cosbeta=b then tan((alpha-beta)/2) is equal to

If alpha and beta are eccentric angles of the ends of a focal chord of the ellipse x^2/a^2 + y^2/b^2 =1 , then tan alpha/2 .tan beta/2 is (A) (1-e)/(1+e) (B) (e+1)/(e-1) (C) (e-1)/(e+1) (D) none of these