Home
Class 12
MATHS
solve int(x^6)/(x^2+1)dx...

solve `int(x^6)/(x^2+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x^6}{x^2 + 1} \, dx\), we can follow these steps: ### Step 1: Rewrite the integrand We can rewrite \(x^6\) as \(x^6 = x^4 \cdot x^2\), which allows us to express the integrand in a more manageable form: \[ \int \frac{x^6}{x^2 + 1} \, dx = \int \frac{x^4 \cdot x^2}{x^2 + 1} \, dx \] ### Step 2: Use polynomial long division Since the degree of the numerator is greater than the degree of the denominator, we can perform polynomial long division. Dividing \(x^6\) by \(x^2 + 1\) gives: \[ x^6 \div (x^2 + 1) = x^4 - x^2 + 1 - \frac{1}{x^2 + 1} \] Thus, we can rewrite the integral: \[ \int \frac{x^6}{x^2 + 1} \, dx = \int \left( x^4 - x^2 + 1 - \frac{1}{x^2 + 1} \right) \, dx \] ### Step 3: Split the integral Now we can split the integral into separate parts: \[ \int \left( x^4 - x^2 + 1 - \frac{1}{x^2 + 1} \right) \, dx = \int x^4 \, dx - \int x^2 \, dx + \int 1 \, dx - \int \frac{1}{x^2 + 1} \, dx \] ### Step 4: Integrate each term Now we can integrate each term separately: 1. \(\int x^4 \, dx = \frac{x^5}{5}\) 2. \(\int x^2 \, dx = \frac{x^3}{3}\) 3. \(\int 1 \, dx = x\) 4. \(\int \frac{1}{x^2 + 1} \, dx = \tan^{-1}(x)\) ### Step 5: Combine the results Putting it all together, we have: \[ \int \frac{x^6}{x^2 + 1} \, dx = \frac{x^5}{5} - \frac{x^3}{3} + x - \tan^{-1}(x) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{x^6}{x^2 + 1} \, dx = \frac{x^5}{5} - \frac{x^3}{3} + x - \tan^{-1}(x) + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

solve int(3x^2)/(x^2+1)dx

int(x^2)/(x^2+6x-12)dx

Solve int(x+(1)/(x)+2)dx

int(x^2)/(x^6+x^3-2)dx

solve int(x^(2)+6/x+9)dx

Evaluate: int(x^6)/(x-1)\ dx

int (x^2-3)/(x^2-7x+6)dx

solve int(x^(3)+6x^(2)+7)dx

solve int(cosx)/(sin^5x)dx

solve int(x^(2)+6/x)dx