Home
Class 12
MATHS
If x/a+y/b=sqrt(2) touches the ellipse (...

If `x/a+y/b=sqrt(2)` touches the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` , then find the eccentric angle `theta` of point of contact.

A

`0^(@)`

B

`90^(@)`

C

`45^(@)`

D

`60^(@)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x/a+y/b=sqrt2 touches the ellipses x^2/a^2+y^2/b^2=1 , then find the ecentricity angle theta of point of contact.

If (sqrt(3))b x+a y=2a b touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then the eccentric angle of the point of contact is pi/6 (b) pi/4 (c) pi/3 (d) pi/2

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

If the line y=x+sqrt(3) touches the ellipse (x^(2))/(4)+(y^(2))/(1)=1 then the point of contact is

If hyperbola (x^2)/(b^2)-(y^2)/(a^2)=1 passes through the focus of ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then find the eccentricity of hyperbola.

If omega is one of the angles between the normals to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 (b>a) at the point whose eccentric angles are theta and pi/2+theta , then prove that (2cotomega)/(sin2theta)=(e^2)/(sqrt(1-e^2))

If omega is one of the angles between the normals to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at the point whose eccentric angles are theta and pi/2+theta , then prove that (2cotomega)/(sin2theta)=(e^2)/(sqrt(1-e^2))

Show that the line y= x + sqrt(5/6 touches the ellipse 2x^2 + 3y^2 = 1 . Find the coordinates of the point of contact.

If p(theta) is a point on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 (agtb) then find its coresponding point

If the line l x+m y+n=0 cuts the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 at points whose eccentric angles differ by pi/2, then find the value of (a^2l^2+b^2m^2)/(n^2) .