Home
Class 12
MATHS
prove the inequality where concerned num...

prove the inequality where concerned number are all positive `a^2+b^2+c^2>ab+bc+ca`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the inequality \( a^2 + b^2 + c^2 > ab + bc + ca \) for positive numbers \( a, b, c \), we can follow these steps: ### Step 1: Rearranging the Inequality We start with the inequality we want to prove: \[ a^2 + b^2 + c^2 > ab + bc + ca \] We can rearrange this to: \[ a^2 + b^2 + c^2 - ab - bc - ca > 0 \] ### Step 2: Grouping Terms Next, we can group the terms in pairs: \[ = \frac{1}{2} \left( (a-b)^2 + (b-c)^2 + (c-a)^2 \right) \] This step uses the identity: \[ x^2 + y^2 = (x-y)^2 + 2xy \] to express the left-hand side in terms of squared differences. ### Step 3: Analyzing the Expression Since \( a, b, c \) are all positive numbers, the squared terms \( (a-b)^2, (b-c)^2, (c-a)^2 \) are all non-negative. Therefore, we have: \[ (a-b)^2 \geq 0, \quad (b-c)^2 \geq 0, \quad (c-a)^2 \geq 0 \] Adding these non-negative terms gives: \[ (a-b)^2 + (b-c)^2 + (c-a)^2 \geq 0 \] ### Step 4: Conclusion Thus, we conclude that: \[ \frac{1}{2} \left( (a-b)^2 + (b-c)^2 + (c-a)^2 \right) \geq 0 \] This implies: \[ a^2 + b^2 + c^2 - ab - bc - ca > 0 \] Therefore, we have proved that: \[ a^2 + b^2 + c^2 > ab + bc + ca \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Resolve into linear factors a^2+b^2+c^2-ab-bc-ca

Factorise : a^2 - ab - ca + bc

If a,b and c are non- zero real number then prove that |{:(b^(2)c^(2),,bc,,b+c),(c^(2)a^(2),,ca,,c+a),(a^(2)b^(2),,ab,,a+b):}| =0

If three distinct real number a,b and c satisfy a^2(a+p)=b^2(b+p)=c^2(c+p) , where pepsilonR , then value of bc+ca+ab is :

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

What should be subtracted from a^2+b^2+c^2-ab-bc-9 to get ab+bc+ca+abc+9

If a,b,c are real numbers such that 3(a^(2)+b^(2)+c^(2)+1)=2(a+b+c+ab+bc+ca) , than a,b,c are in

If a + b- c = 4 and a^(2) + b^(2) + c^(2)= 38 , find ab- bc - ca

If a+b+ c=9 and ab + bc +ca = 15 , find : a^2 + b^2 + c^2 .