Home
Class 12
MATHS
integrate: int(sin6x+sin4x)/(cos6x+cos4x...

integrate: `int(sin6x+sin4x)/(cos6x+cos4x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin 6x + \sin 4x}{\cos 6x + \cos 4x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Sine and Cosine Functions We can use the sum-to-product identities for sine and cosine: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] For \( A = 6x \) and \( B = 4x \): - \( A + B = 10x \) - \( A - B = 2x \) Thus, we can rewrite: \[ \sin 6x + \sin 4x = 2 \sin(5x) \cos(x) \] \[ \cos 6x + \cos 4x = 2 \cos(5x) \cos(x) \] ### Step 2: Substitute into the Integral Substituting these into the integral gives: \[ \int \frac{2 \sin(5x) \cos(x)}{2 \cos(5x) \cos(x)} \, dx \] The \( 2 \) and \( \cos(x) \) terms cancel out: \[ \int \frac{\sin(5x)}{\cos(5x)} \, dx \] ### Step 3: Simplify the Integral The expression simplifies to: \[ \int \tan(5x) \, dx \] ### Step 4: Integrate The integral of \( \tan(kx) \) is given by: \[ \int \tan(kx) \, dx = -\frac{1}{k} \ln |\cos(kx)| + C \] In our case, \( k = 5 \): \[ \int \tan(5x) \, dx = -\frac{1}{5} \ln |\cos(5x)| + C \] ### Final Answer Thus, the final answer is: \[ -\frac{1}{5} \ln |\cos(5x)| + C \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

int(sin^3x+sin^5x)/(cos^2x+cos^4x)dx

int(sinxcosx)/(sin^4x+cos^4x)dx

Evaluate the following integration int (sin 4x)/(sin x)dx

int (sin2x)/(sin^4x+cos^4x) dx

int (sin2x)/(sin^4x+cos^4x) dx

Evaluate: int(sin^2x)/(cos^6x)\ dx

Evaluate: int1/(sin^4x+sin^2xcos^2x+cos^4x)\ dx

Evaluate: int(sin^4x)/(cos^8x)\ dx

Evaluate the following integrals : int(cos^2x-sin^2x)/(sqrt(1+cos4x))dx

Solve the following integration int (cos x - sin x)/(cos x + sin x)*(2+2 sin 2x)dx