Home
Class 12
MATHS
Find the composition fog and gof where f...

Find the composition fog and gof where `f(x)=x^3+1,g(x)=x^2-2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the compositions \( f \circ g \) and \( g \circ f \) for the functions \( f(x) = x^3 + 1 \) and \( g(x) = x^2 - 2 \), we will follow these steps: ### Step 1: Find \( f \circ g \) To find \( f \circ g \), we need to substitute \( g(x) \) into \( f(x) \): \[ f(g(x)) = f(x^2 - 2) \] Now, we substitute \( x^2 - 2 \) into \( f(x) \): \[ f(x^2 - 2) = (x^2 - 2)^3 + 1 \] ### Step 2: Expand \( (x^2 - 2)^3 \) Using the binomial expansion formula \( (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \): Let \( a = x^2 \) and \( b = 2 \): \[ (x^2 - 2)^3 = (x^2)^3 - 3(x^2)^2(2) + 3(x^2)(2^2) - 2^3 \] Calculating each term: - \( (x^2)^3 = x^6 \) - \( -3(x^2)^2(2) = -6x^4 \) - \( 3(x^2)(2^2) = 12x^2 \) - \( -2^3 = -8 \) Putting it all together: \[ (x^2 - 2)^3 = x^6 - 6x^4 + 12x^2 - 8 \] Now, adding 1: \[ f(g(x)) = x^6 - 6x^4 + 12x^2 - 8 + 1 = x^6 - 6x^4 + 12x^2 - 7 \] ### Step 3: Find \( g \circ f \) Now, we need to find \( g(f(x)) \): \[ g(f(x)) = g(x^3 + 1) \] Substituting \( x^3 + 1 \) into \( g(x) \): \[ g(x^3 + 1) = (x^3 + 1)^2 - 2 \] ### Step 4: Expand \( (x^3 + 1)^2 \) Using the formula \( (a + b)^2 = a^2 + 2ab + b^2 \): Let \( a = x^3 \) and \( b = 1 \): \[ (x^3 + 1)^2 = (x^3)^2 + 2(x^3)(1) + 1^2 = x^6 + 2x^3 + 1 \] Now, subtracting 2: \[ g(f(x)) = x^6 + 2x^3 + 1 - 2 = x^6 + 2x^3 - 1 \] ### Final Results Thus, the compositions are: \[ f \circ g = x^6 - 6x^4 + 12x^2 - 7 \] \[ g \circ f = x^6 + 2x^3 - 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find fog and gof if: f(x)=sinx,g(x)=x^(2)

Find fog and gof , if f(x)=x^2 , g(x)=cosx

Find fog and gof , if f(x)=x+1 , g(x)=e^x

Find fog and gof , if f(x)=x+1 , g(x)=2x+3

Find fog and gof , if f(x)=x+1 , g(x)=sinx

Find fog and gof , if f(x)=|x| , g(x)=sinx

Find fog and gof if: f(x)=e^(x),g(x)=lnx

Find fog and gof , if f(x)=sin^(-1)x , g(x)=x^2

Find fog and gof , if f(x)=x^2+2 , g(x)=1-1/(1-x)

Find fog and gof , if f(x)=e^x , g(x)=(log)_e x