Home
Class 12
MATHS
The eccentricity of the ellipse 9x^(2) +...

The eccentricity of the ellipse `9x^(2) + 5y^(2) - 18x - 20y - 16 = 0` is

A

`1/2`

B

`2/3`

C

`1/3`

D

`3/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the eccentricity of the ellipse given by the equation \(9x^2 + 5y^2 - 18x - 20y - 16 = 0\), we will follow these steps: ### Step 1: Rearrange the equation We start with the equation: \[ 9x^2 + 5y^2 - 18x - 20y - 16 = 0 \] Rearranging gives: \[ 9x^2 - 18x + 5y^2 - 20y = 16 \] ### Step 2: Complete the square for \(x\) and \(y\) For the \(x\) terms: \[ 9(x^2 - 2x) \quad \text{(factor out 9)} \] To complete the square: \[ x^2 - 2x = (x - 1)^2 - 1 \] Thus: \[ 9((x - 1)^2 - 1) = 9(x - 1)^2 - 9 \] For the \(y\) terms: \[ 5(y^2 - 4y) \quad \text{(factor out 5)} \] To complete the square: \[ y^2 - 4y = (y - 2)^2 - 4 \] Thus: \[ 5((y - 2)^2 - 4) = 5(y - 2)^2 - 20 \] ### Step 3: Substitute back into the equation Substituting back into the rearranged equation: \[ 9((x - 1)^2 - 1) + 5((y - 2)^2 - 4) = 16 \] This simplifies to: \[ 9(x - 1)^2 - 9 + 5(y - 2)^2 - 20 = 16 \] Combining like terms: \[ 9(x - 1)^2 + 5(y - 2)^2 - 29 = 16 \] Thus: \[ 9(x - 1)^2 + 5(y - 2)^2 = 45 \] ### Step 4: Divide by 45 to get the standard form Dividing through by 45 gives: \[ \frac{(x - 1)^2}{5} + \frac{(y - 2)^2}{9} = 1 \] ### Step 5: Identify \(a^2\) and \(b^2\) From the standard form \(\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1\): - \(a^2 = 5\) - \(b^2 = 9\) ### Step 6: Calculate the eccentricity The eccentricity \(e\) of an ellipse is given by the formula: \[ e = \sqrt{1 - \frac{a^2}{b^2}} \] Since \(b^2 > a^2\), we have: \[ e = \sqrt{1 - \frac{5}{9}} = \sqrt{\frac{4}{9}} = \frac{2}{3} \] ### Final Answer The eccentricity of the ellipse is: \[ \frac{2}{3} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The eccentricity of the ellipse x^(2) + 2y^(2) =6 is

The eccentricity of the ellipse 9x^2+5y^2-30 y=0 is

The eccentricity of the conic 9x^(2) + 25y^(2) - 18 x - 100 y = 116 is

The eccentricity of the ellipse (x^2)/25+(y^2)/9=1 is ,

The eccentricity of the ellipse x^(2)+4y^(2)+8y-2x+1=0 , is

The centre of the ellipse 4x^(2) + 9y^(2) + 16x - 18y - 11 = 0 is

Write the eccentricity of the ellipse 9x^2+5y^2-18 x-2y-16=0.

The eccentricity of the ellipse 9x^2+25 y^2-18 x-100 y-116=0 is a. 25//16 b. 4//5 c. 16//25 d. 5//4

The eccentricity of the ellipse 9x^2+25 y^2-18 x-100 y-116=0 is a. 25/16 b. 4/5 c. 16/25 d. 5/4

The eccentricity of the hyperbola 9x^(2) -16y^(2) =144 is