Home
Class 12
MATHS
If the extremities of a focal chord are ...

If the extremities of a focal chord are `(5pi)/(12)` and `(pi)/(12)` then e =

A

`(1)/sqrt(2)`

B

`sqrt(3/2)`

C

`sqrt(3)/(4)`

D

`sqrt(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the eccentricity \( e \) of the ellipse given the extremities of a focal chord at \( \frac{5\pi}{12} \) and \( \frac{\pi}{12} \), we can use the formula related to focal chords: \[ E \cdot \cos\left(\frac{\alpha + \beta}{2}\right) = \cos\left(\frac{\alpha - \beta}{2}\right) \] ### Step-by-Step Solution: 1. **Identify the values of \( \alpha \) and \( \beta \)**: - Given \( \alpha = \frac{5\pi}{12} \) and \( \beta = \frac{\pi}{12} \). 2. **Calculate \( \alpha + \beta \)**: \[ \alpha + \beta = \frac{5\pi}{12} + \frac{\pi}{12} = \frac{6\pi}{12} = \frac{\pi}{2} \] 3. **Calculate \( \alpha - \beta \)**: \[ \alpha - \beta = \frac{5\pi}{12} - \frac{\pi}{12} = \frac{4\pi}{12} = \frac{\pi}{3} \] 4. **Substitute into the formula**: \[ E \cdot \cos\left(\frac{\pi}{2} \cdot \frac{1}{2}\right) = \cos\left(\frac{\pi}{3} \cdot \frac{1}{2}\right) \] This simplifies to: \[ E \cdot \cos\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{6}\right) \] 5. **Evaluate \( \cos\left(\frac{\pi}{4}\right) \) and \( \cos\left(\frac{\pi}{6}\right) \)**: - \( \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) - \( \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \) 6. **Substitute these values back into the equation**: \[ E \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{3}}{2} \] 7. **Solve for \( E \)**: \[ E = \frac{\sqrt{3}}{2} \cdot \sqrt{2} = \frac{\sqrt{6}}{2} \] 8. **Final Result**: \[ E = \frac{\sqrt{6}}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

tan((11pi)/12)

If alpha and beta are the eccentric angles of the extremities of a focal chord of an ellipse, then prove that the eccentricity of the ellipse is (sinalpha+sinbeta)/("sin"(alpha+beta))

The locus of the point of intersection of tangents drawn at the extremities of a focal chord to the parabola y^2=4ax is the curve

The value of tan((5pi)/12)-tan(pi/12) is

If the point ( at^2,2at ) be the extremity of a focal chord of parabola y^2=4ax then show that the length of the focal chord is a(t+1/t)^2 .

Show that the tangents at the extremities of any focal chord of a parabola intersect at right angles at the directrix.

Evaluate : cos ^(2) ""(pi)/(12) - sin ^(2) ""(pi)/(12)

Prove that the tangent at one extremity of the focal chord of a parabola is parallel to the normal at the other extremity.

Find the value of tan (13pi)/(12) .

Which of the following quantities are rational? (a) sin((11pi)/(12))sin((5pi)/(12)) (b) cos e c((9pi)/(10))sec((4pi)/5) (c) sin^4(pi/8)+cos^4(pi/8) (d) (1+cos((2pi)/9))(1+cos((4pi)/9))(1+cos((8pi)/9))