Home
Class 12
MATHS
If alpha and beta are eccentric an...

If ` alpha and beta ` are eccentric angles of the ends of a focal chord of the ellipse `(x^(2))/(a^(2))+(y^(2))/( b^(2)) =1` then ` tan ( alpha )/(@) tan ""( beta)/(2)` is equal to

A

`(1+tan(alpha)/(2)tan(beta)/(2))/(1-tan (alpha)/(2)tan (beta)/(2))`

B

`(1-tan(alpha)/(2)tan(beta)/(2))/(1+tan (alpha)/(2)tan (beta)/(2))`

C

`(tan(alpha)/(2)tan(beta)/(2)+1)/(tan(alpha)/(2)tan (beta)/(2)-1)`

D

`(tan(alpha)/(2)tan(beta)/(2)-1)/(tan (alpha)/(2)tan (beta)/(2)+1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are eccentric angles of the ends of a focal chord of the ellipse x^2/a^2 + y^2/b^2 =1 , then tan alpha/2 .tan beta/2 is (A) (1-e)/(1+e) (B) (e+1)/(e-1) (C) (e-1)/(e+1) (D) none of these

If alpha-beta is constant prove that the chord joining the points alpha and beta on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 touches a fixed ellipse

If the eccentric angles of the extremities of a focal chord of an ellipse x^2/a^2 + y^2/b^2 = 1 are alpha and beta , then (A) e = (cos alpha + cos beta)/(cos (alpha + beta)) (B) e= (sin alpha + sin beta)/(sin(alpha + beta)) (C) cos((alpha-beta)/(2)) = e cos ((alpha + beta)/(2)) (D) tan alpha/2.tan beta/2 = (e-1)/(e+1)

If alpha and beta are the eccentric angles of the extremities of a focal chord of an ellipse, then prove that the eccentricity of the ellipse is (sinalpha+sinbeta)/("sin"(alpha+beta))

If the chord, joining two points whose eccentric angles are alpha and beta , cuts the major axis ofthe ellipse x^2/a^2 + y^2/b^2=1 at a distance c from the centre, then tan alpha//2.tan beta//2 is equal to

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

If tan alpha =m/(m+1) and tan beta =1/(2m+1) , then alpha+beta is equal to

If 2tan""(alpha)/(2) = tan ""(beta)/(2) , then (3+5cosbeta)/(5+3cosbeta) is equal to :

Area of the triangle formed by the tangents at the point on the ellipse x^2/a^2+y^2/b^2=1 whose eccentric angles are alpha,beta,gamma is

If "sin" alpha=ksinbeta then tan((alpha-beta)/(2)).cot((alpha+beta)/(2)) is equal to