Home
Class 12
MATHS
The asending order of the eccentricities...

The asending order of the eccentricities `l_(1),l_(2),l_(3)` of the conics `12x^(2) + 3y^(2) = 15, x^(2) +2y^(2) = 6, 4(x-1)^(2) + 3(y+2)^(2) = 12`

A

`l_(1),l_(2),l_(3)`

B

`l_(3),l_(2),l_(1)`

C

`l_(3),l_(1),l_(2)`

D

`l_(2),l_(1),l_(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the ascending order of the eccentricities \( l_1, l_2, l_3 \) of the given conics, we need to analyze each equation and determine their types (ellipse, parabola, hyperbola) and calculate their eccentricities. ### Step 1: Analyze the first conic \( 12x^2 + 3y^2 = 15 \) 1. **Rearranging the equation**: \[ \frac{12x^2}{15} + \frac{3y^2}{15} = 1 \implies \frac{4x^2}{5} + \frac{y^2}{5} = 1 \] 2. **Identifying the conic type**: This is in the form \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) where \( a^2 = \frac{5}{4} \) and \( b^2 = 5 \). Since both \( a^2 \) and \( b^2 \) are positive, this is an ellipse. 3. **Calculating the eccentricity**: The eccentricity \( e \) of an ellipse is given by: \[ e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{5/4}{5}} = \sqrt{1 - \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \] So, \( l_1 = \frac{\sqrt{3}}{2} \). ### Step 2: Analyze the second conic \( x^2 + 2y^2 = 6 \) 1. **Rearranging the equation**: \[ \frac{x^2}{6} + \frac{2y^2}{6} = 1 \implies \frac{x^2}{6} + \frac{y^2}{3} = 1 \] 2. **Identifying the conic type**: This is also in the form of an ellipse since both denominators are positive. 3. **Calculating the eccentricity**: Here, \( a^2 = 6 \) and \( b^2 = 3 \): \[ e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{3}{6}} = \sqrt{1 - \frac{1}{2}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} \] So, \( l_2 = \frac{1}{\sqrt{2}} \). ### Step 3: Analyze the third conic \( 4(x-1)^2 + 3(y+2)^2 = 12 \) 1. **Rearranging the equation**: \[ \frac{4(x-1)^2}{12} + \frac{3(y+2)^2}{12} = 1 \implies \frac{(x-1)^2}{3} + \frac{(y+2)^2}{4} = 1 \] 2. **Identifying the conic type**: This is again in the form of an ellipse. 3. **Calculating the eccentricity**: Here, \( a^2 = 4 \) and \( b^2 = 3 \): \[ e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{3}{4}} = \sqrt{\frac{1}{4}} = \frac{1}{2} \] So, \( l_3 = \frac{1}{2} \). ### Step 4: Compare the eccentricities Now we have: - \( l_1 = \frac{\sqrt{3}}{2} \approx 0.866 \) - \( l_2 = \frac{1}{\sqrt{2}} \approx 0.707 \) - \( l_3 = \frac{1}{2} = 0.5 \) ### Step 5: Ascending order of eccentricities Arranging them in ascending order: \[ l_3 < l_2 < l_1 \implies \frac{1}{2} < \frac{1}{\sqrt{2}} < \frac{\sqrt{3}}{2} \] ### Final Answer The ascending order of the eccentricities is: \[ l_3, l_2, l_1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The eccentricity of the conics - (x^(2))/(a^(2)) +(y^(2))/(b^(2)) = 1 is

The eccentricity of the conic x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2)) is

Factorise : 12(3x - 2y)^(2) - (3x - 2y)-1

The eccentric angles of the ends of L.R. of the ellipse (x^(2)/(a^(2))) + (y^(2)/(b^(2))) = 1 is

Find the eccentricity of the conic 4(2y-x-3)^2-9(2x+y-1)^2=80

Divide: 25 x^3y^2\ by -15 x^2y (ii) -72 x^2y z\ by -12 x y z

Equation of the parabola with focus (0,-3) and the directrix y=3 is: (a) x^(2)=-12y (b) x^(2)=12y (c) x^(2)=3y (d) x^(2)=-3y

The equation of line l_(1) is y=(5)/(2)x-4 , and the equation of line l_(2) is y=-(2)/(5)x+9 .

Prove that the centres of the circles x^2+y^2=1 , x^2+y^2+6x-2y-1=0 and x^2+y^2-12x+4y=1 are collinear

Prove that the centres of the circles x^2+y^2=1 , x^2+y^2+6x-2y-1=0 and x^2+y^2-12x+4y=1 are collinear