Home
Class 12
MATHS
If the normal at one end of latusrectum ...

If the normal at one end of latusrectum of an ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` passes through one end of minor axis then a) `e+e^(2)=1` b) `a^2 e^(4)+e^(2)=1` c)`e^(4)-e^(2)=1` d) `e^(4)-e^(2)=2`

A

`e+e^(2)=1`

B

`a^2 e^(4)+e^(2)=1`

C

`e^(4)-e^(2)=1`

D

`e^(4)-e^(2)=2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The normal at an end of a latus rectum of the ellipse x^2/a^2 + y^2/b^2 = 1 passes through an end of the minor axis if (A) e^4+e^2=1 (B) e^3+e^2=1 (C) e^2+e=1 (D) e^3+e=1

If the normals at an end of a latus rectum of an ellipse passes through the other end of the minor axis, then prove that e^(4) + e^(2) =1.

If the normals at P(theta) and Q(pi/2+theta) to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 meet the major axis at Ga n dg, respectively, then P G^2+Qg^2= b^2(1-e^2)(2-e)^2 a^2(e^4-e^2+2) a^2(1+e^2)(2+e^2) b^2(1+e^2)(2+e^2)

Find the area bounded by the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and the ordinates x = 0 and x = a e , where, b^2=a^2(1-e^2) and e < 1 .

If the length of latusrectum of ellipse E_(1):4(x+y+1)^(2)+2(x-y+3)^(2)=8 and E_(2)=(x^2)/(p)+(y^2)/(p^2)=1, (0ltplt1) are equal , then area of ellipse E_(2) , is

If the normal at 'theta' on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 meets the transverse axis at G , and A and A' are the vertices of the hyperbola , then AC.A'G= (a) a^2(e^4 sec^2 theta-1) (b) a^2(e^4 tan^2 theta-1) (c) b^2(e^4 sec^2 theta-1) (d) b^2(e^4 sec^2 theta+1)

The maximum value of x^4e^ (-x^2) is (A) e^2 (B) e^(-2) (C) 12 e^(-2) (D) 4e^(-2)

If e_(1)ande_(2) be the eccentricities of the ellipses (x^(2))/(a^(2))+(y^(2))/(b^(2))=1and(x^(2))/(a^(2))+(4y^(2))/(b^(2))=1 respectively then prove that 3=4e_(2)^(2)-e_(1)^(2) .

If the chord through the points whose eccentric angles are α and β on the ellipse x^2/a^2+y^2/b^2=1 passes through the focus (ae, 0), then the value of tan(α/2)tan(β/2) is: A. (e+1)/(e−1) B. (e−1)/(e+1) C. (e+1)/(e−2) D. none

If a x+b y=1 is tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , then a^2-b^2 is equal to (a) 1/(a^2e^2) (b) a^2e^2 (c) b^2e^2 (d) none of these