Home
Class 12
MATHS
If y = mx + c is a normal to the ellipse...

If y = mx + c is a normal to the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` if `C=

A

`(a^(2)-b^(2))/(a^(2)m^(2)+b^(2))`

B

`(a^(2)-b^(2))/(a^(2)m^(2))`

C

`(a^(2)-b^(2)m^(2))/(a^(2)+b^(2)m^(2))`

D

`(a^(2)-b^(2)m^(2))/(a^(2)m^(2)+b^(2))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The area of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 is

The line lx+my=n is a normal to the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1

Consider the ellipse C:(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 having its centre at the origin O and eccentricity e. Statement-1: If the normal at an end L of a Latusrectum of the ellipse C meets the major axis at G, then OG=ae^(3) Statement-2 : the normal at a point on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 never passes through its foci.

the equation of a diameter conjugate to a diameter y=(b)/(a)x of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 is

If y = mx + c is a tangent to the ellipse x^(2) + 2y^(2) = 6 , them c^(2) =

A normal to the hyperbola (x^2)/4-(y^2)/1=1 has equal intercepts on the positive x- and y-axis. If this normal touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then a^2+b^2 is equal to 5 (b) 25 (c) 16 (d) none of these

A normal to the hyperbola (x^2)/4-(y^2)/1=1 has equal intercepts on the positive x- and y-axis. If this normal touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then a^2+b^2 is equal to 5 (b) 25 (c) 16 (d) none of these

Prove that the locus of the middle points of normal chords of the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 is the curve (x^(2)/a^(2)+y^(2)/b^(2))(a^(6)/x^(2)+b^(6)/y^(2))=(A^(2)-B^(2))^(2)

The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is