Home
Class 12
MATHS
A straight line vecr=veca+lamdavecb meet...

A straight line `vecr=veca+lamdavecb` meets the plane `vecr.vecn=0` in `P`. The position vector of `P`, is

A

`bara+((bara.barn)/(barb.barn))barb`

B

`bara-(barb.barn)barb`

C

`bara-((bara.barn)/(barb.barn))barb`

D

`bara+(barb.barn)barb`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

A straight line vecr=veca+lambda vecb meets the plane vecr. vec n=0 at p. Then position vector of P is

A straighat line vecr=veca+lamdavecb meets the plane vecr.vecn=p in the point whose position vector is (A) veca+((veca.hatn)/(vecb.hatn))vecb (B) veca+((p-veca.hatn)/(vecb.hatn))vecb (C) veca-((veca.hatn)/(vecb.hatn))vecb (D) none of these

The line vecr= veca + lambda vecb will not meet the plane vecr cdot n =q, if

Distance of point P(vecP) from the plane vecr.vecn=0 is

The line vecr= veca + lambda vecb will not meet the plane vecr cdot vecn =q, if a. vecb.vecn=0,veca.vecn=q b. vecb.vecn" "ne0,veca.vecn" "ne q c. vecb.vecn=0,veca.vecn" "ne q d. vecb.vecn" "ne0,veca.vecn" "ne q

The angle theta the line vecr=vecr+lamdavecb and the plane vecr.hatn=d is given by (A) sin^-1((vecb.hatn)/(|vecn||vecb|)) (B) cos^-1((vecb.hatn)/(|vecb|)) (C) sin^-1((veca.hatn)/(|veca|)) (D) cos^-1((veca.hatn)/(|veca|))

Find the projection of the line vecr=veca+tvecb on the plane given by vecr.vecn=q .

The equation of the plane containing the line vecr= veca + k vecb and perpendicular to the plane vecr . vecn =q is :

The plane contaning the two straight lines vecr=veca+lamda vecb and vecr=vecb+muveca is (A) [vecr veca vecb]=0 (B) [vecr veca veca xxvecb]=0 (C) [vecr vecb vecaxxvecb]=0 (D) [vecr veca+vecb vecaxxvecb]=0

Find the equation a plane containing the line vecr =t veca and perpendicular to the plane containing the line vecr = u vecb and vecr = v vec c.