Home
Class 12
MATHS
The two lines x= ay+b, z=cy+d and x=a^(1...

The two lines x= ay+b, z=cy+d and `x=a^(1)y+b^(1), y=c^(1) y+d^(1)` are at right angles if a) `aa^(1)+c c^(1)=-1` b)`aa^(1)+b b^(1)+c c^(1)+1=0` c)`aa^(1)+b b^(1)+c c^(1)=0` d)`(a+a^(1))(b+b^(1))+c+c^(1)=0`

A

`aa^(1)+ cc^(1)=-1`

B

`aa^(1)+b b^(1)+c c^(1)+1=0`

C

`aa^(1)+b b^(1)+c c^(1)=0`

D

`(a+a^(1))(b+b^(1))+c+c^(1)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the condition under which the two lines given by the equations \( x = ay + b, z = cy + d \) and \( x = a^{(1)}y + b^{(1)}, y = c^{(1)}y + d^{(1)} \) are at right angles, we can follow these steps: ### Step 1: Identify the Direction Ratios The given lines can be expressed in a parametric form to identify their direction ratios. For the first line: - We can express it as: \[ \frac{x - b}{a} = \frac{y - y_1}{1} = \frac{z - d}{c} \] Here, the direction ratios are \( (a, 1, c) \). For the second line: - We can express it as: \[ \frac{x - b^{(1)}}{a^{(1)}} = \frac{y - y_1}{1} = \frac{z - d^{(1)}}{c^{(1)}} \] Here, the direction ratios are \( (a^{(1)}, 1, c^{(1)}) \). ### Step 2: Use the Condition for Perpendicular Lines For two lines to be perpendicular, the dot product of their direction ratios must equal zero. Therefore, we have: \[ a \cdot a^{(1)} + 1 \cdot 1 + c \cdot c^{(1)} = 0 \] This simplifies to: \[ aa^{(1)} + 1 + cc^{(1)} = 0 \] ### Step 3: Rearrange the Equation Rearranging the equation gives us: \[ aa^{(1)} + cc^{(1)} = -1 \] ### Conclusion Thus, the condition under which the two lines are at right angles is: \[ aa^{(1)} + cc^{(1)} = -1 \] This corresponds to option (a). ### Final Answer The correct answer is: **a) \( aa^{(1)} + cc^{(1)} = -1 \)** ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If the lines x=a_(1)y + b_(1), z=c_(1)y +d_(1) and x=a_(2)y +b_(2), z=c_(2)y + d_(2) are perpendicular, then

Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

the two lines x=ay+b,z=cy+d and x=a\'y+b,z=c\'y+d\' will be perpendicular, if and only if: (A) aa\'+c c' + 1=0 (B) aa\'+b b\'+c c'+1=0 (C) aa\'+b b\'+c c'=0 (D) (a+a\')+(b+b\')+(c+c\')=0

If the lines x+ay+a=0, bx+y+b=0, cx+cy+1=0 (a!=b!=c!=1) are concurrent then value of a/(a-1)+b/(b-1)+c/(c-1)=

The condition of the lines x=az+b,y=cz+d and x=a_1z+b_1,y=c_1z+d_1 to be perpendicular is (A) ac_1+a_1c+1=0 (B) aa_1+c c_1+1=0 (C) ac_1+b b\'+c c\'=0 (D) aa_1+c c_1-1=0

If a, b and c are any three vectors and their inverse are a^(-1), b^(-1) and c^(-1) and [a b c]ne0 , then [a^(-1) b^(-1) c^(-1)] will be

If a b c=0 , then find the value of {(x^a)^b}^c (a)1 (b) a (c)b (d) c

If a ,b ,c are in G.P. and a^(1//x)=b^(1//y)=c^(1//z), then x y z are in AP (b) GP (c) HP (d) none of these

For non-singular square matrix A ,\ B\ a n d\ C of the same order then, (A B^(-1)C)^(-1)= (a) A^(-1)B C^(-1) (b) C^(-1)B^(-1)A^(-1) (c) C B A^(-1) (d) C^(-1)\ B\ A^(-1)

If y = (1)/(1 + x^(a - b) + x^(c - b)) + (1)/(1 + x^(b-c) + x^(a - c)) + (1)/(1 + x^(b - a) + x^(c - a)) then find (dy)/(dx) at e^(a^(b^(c )))