Home
Class 12
MATHS
If the straight lines (x-1)/(k)=(y-2)/(2...

If the straight lines `(x-1)/(k)=(y-2)/(2)=(z-3)/(3) and (x-2)/(3)=(y-3)/(k)=(z-1)/(2)` intersect at a point, then the integer `k` is equal to

A

`-5`

B

5

C

2

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then

If the line (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) intersect, then k is equal to

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

If the lines (x-1)/(1)=(y-3)/(1)=(z-2)/(lambda) and (x-1)/(lambda)=(y-3)/(2)=(z-4)/(1) intersect at a point, then the value of lambda^(2)+4 is equal to

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(-2) and (x-1)/(3k)=(y-5)/1=(z-6)/(-5) are at right angle, then find the value of k .

The projection of the line (x-1)/(2)=(y+1)/(2)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) , intersect , then k is equal to

The straight line (x+2)/(5) = (z-3)/( 1) , y=2 is

If the line (x-1)/(-3) = (y-2)/(2k) = (z-3)/( 2) and (x-1)/( 3k) = (y-5)/(1) = (6-z)/(5) are mutually perpendicular, then k is equal to

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-1)/1=(z-6)/(-5) are perpendicular, find the value of k.

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(2)a n d(x-1)/(3k)=(y-5)/1=(z-6)/(-5) are at right angel, then find the value of kdot