Home
Class 12
CHEMISTRY
Gold crystallizes with a...

Gold crystallizes with a 

A

a) fcc

B

b) bcc

C

c) simple cubic

D

d) orthorhombic

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question regarding the crystallization structure of gold, we will analyze the options provided and determine the correct answer step by step. ### Step 1: Understand the question The question asks about the crystallization structure of gold. The options given are: - A) FCC (Face-Centered Cubic) - B) BCC (Body-Centered Cubic) - C) Simple Cubic - D) Orthorhombic ### Step 2: Identify the properties of gold Gold (Au) is a metal known for its high density and malleability. It is important to consider the common crystal structures that metals can adopt. ### Step 3: Analyze the crystal structures 1. **FCC (Face-Centered Cubic)**: In this structure, atoms are located at each corner of the cube and at the center of each face. This structure is known for its high packing efficiency and is common among metals. 2. **BCC (Body-Centered Cubic)**: In this structure, there is one atom at each corner of the cube and one atom in the center of the cube. This structure has a lower packing efficiency compared to FCC. 3. **Simple Cubic**: In this structure, atoms are only located at the corners of the cube. This structure is rare for metals due to its low packing efficiency. 4. **Orthorhombic**: This structure has different lengths for all three axes and is not common for metals like gold. ### Step 4: Determine the most likely structure for gold Given that gold is a heavy metal with a high atomic number, it tends to adopt a more efficient packing structure. Among the options, FCC is known for its close packing and is the structure adopted by many metals, including gold. ### Step 5: Conclude the answer Based on the analysis, gold crystallizes in the FCC structure. Therefore, the correct answer is: **Option A: FCC** ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Metallic gold crystallizes in the face centered cubic lattice. What is the approximate number of unit cells in 2.0 g of gold ? (Atomic mass of gold is 197 amu)

Metallic gold crystallizes in the fcc lattice. The length of the cubic unit cell is a = 4.242 A . a. What is the closest distance between gold atoms? b. How many "nearest neighbours" does each gold atom have at the distance calculated in (a) ? (c) What is the density of gold? (Aw of Au = 197.0 g mol^(-1) ) d. Prove that the packing factor for gold is 0.74 .

An alloy of copper and gold crystallizes in cubic lattic, in which the Au- atoms occupy the lattice points at the corners of cube and Cu- atoms occupy the centre of each face. The formula of this alloy is :

An alloy of copper and gold crystallizes in cubic lattic, in which the Au- atoms occupy the lattice points at the corners of cube and Cu- atoms occupy the centre of each face. The formula of this alloy is :

Gold crystallises in ccp structure. The number of voids present in 197 g of gold will be [Au = 197]

Calculate the approximate number of unit cells present in 1 g of gold. Given that gold cyrstallises in a face centred cubic lathce (Given atomic mass of gold = 197 u).

Calculate the approximate number of unit cells present in 1 g of gold. Given that gold cyrstallises in a face centred cubic lathce (Given atomic mass of gold = 197 u).

Gold (atoic radius = 0.144 nm) crystallizes in a facelcentred unit cell. What is the length of a side of the cell?

Gold (atoic radius = 0.144 nm) crystallizes in a facelcentred unit cell. What is the length of a side of the cell?

The addition of CaCl_(2) crystal to KCl crystal a. Lowers the density of the KCl crystal b. Raises the density of the KCl crystal c. Does not affect the density of the KCl crystal d. Increases the Frenkel defects of the KCl crystal