Home
Class 11
CHEMISTRY
If the Planck's constant h=6.6×10^(-34) ...

If the Planck's constant h=6.6×`10^(-34)` Js, the de Broglie wave length of a particle having momentum of 3.3×`10^(-24) kg m s^(-1)` will be ...

A

`2 xx 10^(-10)m`

B

`1 xx 10^(-15) m`

C

`10^(-5)m`

D

`4 xx 10^(-10)m`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the Planck's constant h=6.6× 10^(-34) Js, the de Broglie wave length of a particle having momentum of 6.6× 10^(-24) kg m s^(-1) will be

If the Planck's constant h=6.6× 10^(-34) Js, the de Broglie wave length of a particle having momentum of 1.1× 10^(-24) kg m s^(-1) will be

If the Planck's constant h=6.6× 10^(-34) Js, the de Broglie wave length of a particle having momentum of 4.4× 10^(-24) kg m s^(-1) will be

If the Planck's constant h=6.6× 10^(-34) Js, the de Broglie wave length of a particle having momentum of 2.2× 10^(-24) kg m s^(-1) will be

If the Planck's constant h=6.6× 10^(-34) Js, the de Broglie wave length of a particle having momentum of 5.5 .× 10^(-24) kg m s^(-1) will be

Find the de Broglie wavelength of a 0.01 kg pallet having a velocity of 10 m//s .

If the mass of neutron is 1.7xx10^(-27) kg , then the de Broglie wavelength of neutron of energy 3eV is (h = 6.6xx10^(-34) J.s)

The mass of hydrogen atom is 1.66 xx 10^(-24)g and Planck's constant is 6.64 xx 10^(-27) erg.sec. The de Broglie wavelength of a hydrogen atom moving with a velocity half that of light of

Find the de Broglie wavelength of 2 MeV proton. Mass of proton =1.64xx10^(-27)kg , h=6.625xx10^(-34)Js

The de Broglie wavelength of neutrons in thermal equilibrium is (given m_n=1.6xx10^(-27) kg)