Home
Class 12
MATHS
Simplify sqrt5 sqrt(-3)...

Simplify `sqrt5 sqrt(-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt{5} \sqrt{-3} \), follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt{5} \sqrt{-3} \] ### Step 2: Use the property of square roots We can use the property of square roots that states \( \sqrt{a} \sqrt{b} = \sqrt{ab} \). Thus, we can rewrite our expression as: \[ \sqrt{5 \cdot (-3)} \] ### Step 3: Calculate the product inside the square root Now, we compute the product: \[ 5 \cdot (-3) = -15 \] So, we have: \[ \sqrt{-15} \] ### Step 4: Express the square root of a negative number Since we have a negative number under the square root, we can express it using the imaginary unit \( i \), where \( i = \sqrt{-1} \). Therefore: \[ \sqrt{-15} = \sqrt{15} \cdot \sqrt{-1} = \sqrt{15} \cdot i \] ### Step 5: Final expression Thus, the simplified form of the original expression is: \[ \sqrt{15} i \] ### Final Answer: \[ \sqrt{5} \sqrt{-3} = \sqrt{15} i \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify sqrt(5+2sqrt(6))+sqrt(8-2sqrt(15))

Rationlise the denominator and simplify: (sqrt5+sqrt3)/(sqrt5-sqrt3)

Simplify (sqrt5-sqrt2)(sqrt5+sqrt2)

Simplify (sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) e

Simplify: 1/(sqrt5 + sqrt4) + 1/(sqrt4 + sqrt3) + 1/(sqrt3 + sqrt2) + 1/(sqrt2 + sqrt1)

Simplify: sqrt(3-2sqrt(2))

Simplify: (\sqrt 5+\sqrt 3)/(\sqrt 5 - \sqrt 3)\times (\sqrt 5+\sqrt 3)/(\sqrt 5 +\sqrt 3)

Rationlise the denominator and simplify: (2)/(sqrt5+ sqrt3)

Simplify {(\sqrt 5+\sqrt 3)\times (\sqrt 5 - \sqrt 3)}/(\sqrt 7- \sqrt 3)\times (\sqrt 7+ \sqrt 3)/(\sqrt 7+\sqrt 3)

Simplify: (sqrt 3 - sqrt 5)(sqrt 5+ sqrt 3)