Home
Class 12
MATHS
Simplify sqrt(-7) xx sqrt(-8) ?...

Simplify `sqrt(-7) xx sqrt(-8)` ?

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt{-7} \times \sqrt{-8} \), we can follow these steps: ### Step 1: Rewrite the square roots of negative numbers We start by rewriting the square roots of negative numbers using the imaginary unit \( i \), where \( i = \sqrt{-1} \). \[ \sqrt{-7} = \sqrt{-1} \times \sqrt{7} = i \sqrt{7} \] \[ \sqrt{-8} = \sqrt{-1} \times \sqrt{8} = i \sqrt{8} \] ### Step 2: Multiply the two expressions Now we can multiply the two expressions we obtained: \[ \sqrt{-7} \times \sqrt{-8} = (i \sqrt{7}) \times (i \sqrt{8}) \] ### Step 3: Apply the multiplication Using the property of multiplication, we can rearrange the terms: \[ = i \times i \times \sqrt{7} \times \sqrt{8} \] ### Step 4: Simplify \( i \times i \) We know that \( i^2 = -1 \), so: \[ = -1 \times \sqrt{7} \times \sqrt{8} \] ### Step 5: Combine the square roots Using the property of square roots, we can combine \( \sqrt{7} \) and \( \sqrt{8} \): \[ = -1 \times \sqrt{7 \times 8} = -1 \times \sqrt{56} \] ### Step 6: Final result Thus, the simplified expression is: \[ = -\sqrt{56} \] ### Summary The final answer is: \[ -\sqrt{56} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: sqrt(-20) + sqrt(-12)

Simplify sqrt(-16)xxsqrt(-25) .

Simplify: (sqrt(-2))/(sqrt(-8))

Simplify: sqrt(-4) + sqrt(-16)- sqrt(-25)

Simplify: sqrt(3-2sqrt(2))

Simplify (5+sqrt(7))(5+sqrt(2))

Simplify : sqrt(3+2sqrt(2))

Simplify: -sqrt((-7)/(4))-sqrt((-1)/(7))

Simplify : (7)/(sqrt(17) - 2sqrt3)-( 3)/(sqrt(17) +2sqrt3)

Simplify : 3sqrt(-16)-2sqrt(-9)+4sqrt(-36)