Home
Class 12
MATHS
Simplifiy i^(2)+i^(4)+i^(6)+.....+(2n...

Simplifiy
`i^(2)+i^(4)+i^(6)+.....+(2n+1)` terms

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( i^2 + i^4 + i^6 + \ldots + i^{2n} \) where there are \( n + 1 \) terms, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the pattern of powers of \( i \)**: The powers of \( i \) cycle every four terms: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) - \( i^5 = i \) - \( i^6 = -1 \) - \( i^7 = -i \) - \( i^8 = 1 \) - And so on... 2. **Determine the powers in the series**: The series consists of even powers of \( i \): - \( i^2, i^4, i^6, \ldots, i^{2n} \) 3. **Calculate the values of the relevant powers**: - For even powers: - \( i^2 = -1 \) - \( i^4 = 1 \) - \( i^6 = -1 \) - \( i^8 = 1 \) - Continuing this pattern, we see that: - \( i^{2k} = -1 \) for odd \( k \) - \( i^{2k} = 1 \) for even \( k \) 4. **Count the number of terms**: The series has \( n + 1 \) terms, which means: - If \( n \) is even, there are \( \frac{n + 1}{2} \) terms equal to \( -1 \) and \( \frac{n + 1}{2} \) terms equal to \( 1 \). - If \( n \) is odd, there are \( \frac{n + 2}{2} \) terms equal to \( -1 \) and \( \frac{n - 1}{2} \) terms equal to \( 1 \). 5. **Sum the series based on the counts**: - If \( n \) is even: \[ \text{Sum} = \left(\frac{n + 1}{2}\right)(1) + \left(\frac{n + 1}{2}\right)(-1) = 0 \] - If \( n \) is odd: \[ \text{Sum} = \left(\frac{n + 2}{2}\right)(-1) + \left(\frac{n - 1}{2}\right)(1) = -\frac{n + 2}{2} + \frac{n - 1}{2} = -\frac{3}{2} \] 6. **Final Result**: - For even \( n \), the sum is \( 0 \). - For odd \( n \), the sum is \( -\frac{3}{2} \). ### Conclusion: The simplified result of the series \( i^2 + i^4 + i^6 + \ldots + i^{2n} \) depends on whether \( n \) is even or odd.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of i^2 + i^4 + i^6 + i^8.... upto (2n+1) terms , where i^2 = -1, is equal to:

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

2i^4 - i^6 = ?

Evaluate 1+i^2+i^4+i^6+...+i^(2n)dot

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

Simplify the following : (i) 1+ i^(5)+i^(10)+i^(15) (ii) (1+i)^(4)+(1+(1)/(i))^(4) (iii) i^(n)+i^(n+1)+i^(n+2)+i^(n+3)

Find the value of 1+i^2+i^4+i^6++i^(2n)

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

Given that (1 + i)/(1 + 2^(2)i) xx (1 + 3^(2) i)/(1 + 4^(2) i) xx….xx (1 + (2n-1)^(2)i)/(1+(2n)^(2)i)= (a + bi)/(c+di) , show that (2)/(17) xx (82)/(257) xx ….xx ((2n-1)^(4) + 1)/((2n)^(4) + 1) = (a^(2) + b^(2))/(c^(2) + d^(2))

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)