Home
Class 12
MATHS
If ((1+i)/(1 -i)) - ((1 - i)/(1 +i)) = x...

If `((1+i)/(1 -i)) - ((1 - i)/(1 +i))` = x +iy find x and y .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{1+i}{1-i} - \frac{1-i}{1+i} = x + iy\), we can follow these steps: ### Step 1: Simplify the first term We start with the first term \(\frac{1+i}{1-i}\). To simplify this, we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1+i}{1-i} \cdot \frac{1+i}{1+i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} \] Calculating the numerator: \[ (1+i)(1+i) = 1 + 2i + i^2 = 1 + 2i - 1 = 2i \] Calculating the denominator: \[ (1-i)(1+i) = 1^2 - i^2 = 1 - (-1) = 2 \] So, we have: \[ \frac{1+i}{1-i} = \frac{2i}{2} = i \] ### Step 2: Simplify the second term Now we simplify the second term \(\frac{1-i}{1+i}\) in a similar manner: \[ \frac{1-i}{1+i} \cdot \frac{1-i}{1-i} = \frac{(1-i)(1-i)}{(1+i)(1-i)} \] Calculating the numerator: \[ (1-i)(1-i) = 1 - 2i + i^2 = 1 - 2i - 1 = -2i \] Calculating the denominator: \[ (1+i)(1-i) = 1^2 - i^2 = 1 - (-1) = 2 \] So, we have: \[ \frac{1-i}{1+i} = \frac{-2i}{2} = -i \] ### Step 3: Combine the two simplified terms Now we can substitute back into the original equation: \[ \frac{1+i}{1-i} - \frac{1-i}{1+i} = i - (-i) = i + i = 2i \] ### Step 4: Equate to \(x + iy\) Now we can equate this to \(x + iy\): \[ 2i = 0 + 2i \] From this, we can see that: \[ x = 0 \quad \text{and} \quad y = 2 \] ### Final Answer Thus, the values of \(x\) and \(y\) are: \[ x = 0, \quad y = 2 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If ((1+i)/(1-i))^(2) - ((1-i)/(1+i))^(2) = x + iy then find (x,y).

If ((1+i)/(1-i))^3-((1-i)/(1+i))^3 =a+ib find a and b

If ((1+i)/(1-i))^3-((1-i)/(1+i))^3=x+i y ,\ fin d\ (x , y)

If ((1+i)/(1-i))^3-((1-i)/(1+i))^3=x+i y ,\ fin d\ (x , y)

If ((1+i)/(1-i))^x = 1, then

If ((1+i)/(1-i))^2=x+i y , find x+ydot

Solve (1−i)x+(1+i)y=1−3i, find x and y

If ( 1+i) (1+ 2i) (1+ 3i) …(1 +ni) = x+ iy, then 2,5,10 ….( 1+n^(2)) = x^(k) +y^(k) The value of k is :

Given that (1 + i) (1 + 2i) (1 + 3i)…(1 + ni)= x+ iy , show that 2.5.10…(1 + n^(2))= x^(2) + y^(2)

Solve the equation ((1+i) x-2i)/(3+i)+ ((2-3i )y + i)/(3-i)=i, x y in R, i= sqrt(-1)