Home
Class 12
MATHS
If (sqrt(3)+i)^(100)=2^(99)(a+ib). Then ...

If `(sqrt(3)+i)^(100)=2^(99)(a+ib)`. Then show that `a^(2)+b^(2)=4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \((\sqrt{3} + i)^{100} = 2^{99}(a + ib)\), then \(a^2 + b^2 = 4\). ### Step-by-step Solution: 1. **Express \(\sqrt{3} + i\) in polar form**: The complex number \(\sqrt{3} + i\) can be expressed in polar form. First, we find the modulus \(r\) and the argument \(\theta\): \[ r = \sqrt{(\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \] The argument \(\theta\) can be calculated as: \[ \theta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] Thus, we can write: \[ \sqrt{3} + i = 2 \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = 2 \text{cis} \frac{\pi}{6} \] 2. **Raise to the power of 100**: Using De Moivre's Theorem, we can raise this expression to the power of 100: \[ (\sqrt{3} + i)^{100} = (2 \text{cis} \frac{\pi}{6})^{100} = 2^{100} \text{cis} \left(\frac{100\pi}{6}\right) = 2^{100} \text{cis} \left(\frac{50\pi}{3}\right) \] 3. **Simplify the argument**: The angle \(\frac{50\pi}{3}\) can be simplified by subtracting multiples of \(2\pi\): \[ \frac{50\pi}{3} - 16\pi = \frac{50\pi - 48\pi}{3} = \frac{2\pi}{3} \] Therefore, we have: \[ (\sqrt{3} + i)^{100} = 2^{100} \text{cis} \left(\frac{2\pi}{3}\right) \] 4. **Convert back to rectangular form**: Now, we convert \(\text{cis} \left(\frac{2\pi}{3}\right)\) back to rectangular form: \[ \text{cis} \left(\frac{2\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + i\frac{\sqrt{3}}{2} \] Thus, \[ (\sqrt{3} + i)^{100} = 2^{100} \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2^{99}(-1 + i\sqrt{3}) \] 5. **Compare with given expression**: From the problem statement, we have: \[ 2^{99}(a + ib) = 2^{99}(-1 + i\sqrt{3}) \] By comparing the coefficients, we find: \[ a = -1 \quad \text{and} \quad b = \sqrt{3} \] 6. **Calculate \(a^2 + b^2\)**: Now, we compute \(a^2 + b^2\): \[ a^2 + b^2 = (-1)^2 + (\sqrt{3})^2 = 1 + 3 = 4 \] ### Conclusion: Thus, we have shown that \(a^2 + b^2 = 4\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+ i sqrt(3))^(1999)=a+ib , then

If (a-ib)/(a+ib)= (1+i)/(1-i) , then show that a+b=0

(x+iy)^(1/3) =(a+ib) then prove that (x/a+y/b)=4(a^2-b^2)

(x+iy)^(1/3) =(a+ib) then prove that (x/a+y/b)=4(a^2-b^2)

If z= ((sqrt3)/(2) + (i)/(2))^(107) + ((sqrt3)/(2)-(i)/(2))^(107) , then show that Im(z)=0

If (a+ib)= (1+i ) /(1-i) , then prove that (a ^2+b^ 2 )=1

If (x+iy) = sqrt((a+ib)/(c+id)) then prove that (x^2 + y^2)^2 = (a^2 + b^2)/(c^2 + d^2)

if 3/(2+cos theta+i sin theta)=a+ib then prove that a^2+b^2=4a-3

Show that (sqrt3/2 + i/2)^3 = i

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=