Home
Class 12
MATHS
If |{:(6i , -3i , 1) , (4 , 3i , -1) , ...

If `|{:(6i , -3i , 1) , (4 , 3i , -1) , (20 , 3 , i):}|` = x +iy show that x = y = 0

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

|{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}| =x+iy then

If |[6i,-3i,1],[ 4, 3i,-1],[ 20, 3,i]|=x+i y , then a. x=3,y=1 b. x=1,y=3 c. x=0,y=3 d. x=0,y=0

If det|6i -3i 1 4 3i-1 20 3 i|=x+i y , then a. x=3,y=1 b. x=1,y=3 c. x=0,y=3 d. x=0,y=0

x+iy=|[6i,-3i,1],[4,3i,-1],[20,3,i]| , find x and y.

Given that (1 + i) (1 + 2i) (1 + 3i)…(1 + ni)= x+ iy , show that 2.5.10…(1 + n^(2))= x^(2) + y^(2)

(i) if A=[{:(4,-1,-4),(3,0,-4),(3,-1,-3):}], then show that A^(2)=I

If A=[(4, 5),( 2 ,1)] , then show that A-3I=2(I+3A^(-1))

If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40I=0

Three particles of masses m , m and 4kg are kept at a verticals of triangle ABC . Coordinates of A , B and C are (1,2) , (3,2) and (-2,-2) respectively such that the centre of mass lies at origin. Find the value of mass m . Hint. x_(cm)=(sum_(i-1)^(3)m_(i)x_(i))/(sum_(i=1)^(3)m_(i)) , y_(cm)=(sum_(i=1)^(3)m_(i)y_(i))/(sum_(i=1)^(3)m_(i))

Three particles of masses m , m and 4kg are kept at a verticals of triangle ABC . Coordinates of A , B and C are (1,2) , (3,2) and (-2,-2) respectively such that the centre of mass lies at origin. Find the value of mass m . Hint. x_(cm)=(sum_(i-1)^(3)m_(i)x_(i))/(sum_(i=1)^(3)m_(i)) , y_(cm)=(sum_(i=1)^(3)m_(i)y_(i))/(sum_(i=1)^(3)m_(i))