Home
Class 12
MATHS
Simplify i^18-3i^7 +i^2 (1 +i^4) (-i)^26...

Simplify `i^18-3i^7 +i^2 (1 +i^4) (-i)^26`.

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( i^{18} - 3i^{7} + i^{2}(1 + i^{4})(-i)^{26} \), we can follow these steps: ### Step 1: Simplify \( i^{18} \) We know that \( i^4 = 1 \). Therefore, we can express \( i^{18} \) as: \[ i^{18} = i^{16} \cdot i^{2} = (i^{4})^{4} \cdot i^{2} = 1^{4} \cdot i^{2} = i^{2} = -1 \] ### Step 2: Simplify \( -3i^{7} \) We can express \( i^{7} \) as: \[ i^{7} = i^{4} \cdot i^{3} = 1 \cdot i^{3} = i^{3} \] Now, \( i^{3} = -i \), so: \[ -3i^{7} = -3(-i) = 3i \] ### Step 3: Simplify \( i^{2}(1 + i^{4})(-i)^{26} \) First, simplify \( i^{4} \): \[ i^{4} = 1 \] So, \( 1 + i^{4} = 1 + 1 = 2 \). Next, simplify \( (-i)^{26} \): \[ (-i)^{26} = (-1)^{26} \cdot i^{26} = 1 \cdot i^{26} = i^{26} \] Now, simplify \( i^{26} \): \[ i^{26} = i^{24} \cdot i^{2} = (i^{4})^{6} \cdot i^{2} = 1^{6} \cdot i^{2} = i^{2} = -1 \] Thus, \( (-i)^{26} = -1 \). Putting it all together: \[ i^{2}(1 + i^{4})(-i)^{26} = (-1)(2)(-1) = 2 \] ### Step 4: Combine all parts Now we can substitute back into the original expression: \[ i^{18} - 3i^{7} + i^{2}(1 + i^{4})(-i)^{26} = -1 + 3i + 2 \] Combine the real parts: \[ (-1 + 2) + 3i = 1 + 3i \] ### Final Answer The simplified expression is: \[ \boxed{1 + 3i} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: i+ 2i^(2) + 3i^(3) + i^(4)

Simplify: (3-7i)^(2)

Simplify: [i^(18) + ((1)/(i))^(25)]^(3)

Simplify: ((1+i)/(1-i))^200

Simplify: (i) (-1)^6 (ii) (-1)^7

Simplify: i ^2+i ^3+i ^4+i ^5

Simplify (1-i root 3)/(2+2i)

Simplify: (1)/(i) + (1)/(i^(2)) + (1)/(i^(3)) + (1)/(i^(4))

Simplify : (1+2i)/(1-2i)-(1-2i)/(1+2i)

Simplify the following: (8i) (- 1/8 i)