Home
Class 12
MATHS
If z1 = (6,3), z2 = (2,-1), find z1/(z2...

If `z_1 = (6,3), z_2 = (2,-1),` find `z_1/(z_2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( z_1 / z_2 \) where \( z_1 = (6, 3) \) and \( z_2 = (2, -1) \), we will follow these steps: ### Step 1: Convert the points to complex numbers We represent the complex numbers from the given coordinates: - \( z_1 = 6 + 3i \) - \( z_2 = 2 - i \) ### Step 2: Write the division of the complex numbers We need to calculate: \[ \frac{z_1}{z_2} = \frac{6 + 3i}{2 - i} \] ### Step 3: Rationalize the denominator To simplify the division, we multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{6 + 3i}{2 - i} \cdot \frac{2 + i}{2 + i} \] ### Step 4: Multiply the numerators Calculating the numerator: \[ (6 + 3i)(2 + i) = 6 \cdot 2 + 6 \cdot i + 3i \cdot 2 + 3i \cdot i \] \[ = 12 + 6i + 6i + 3i^2 \] Since \( i^2 = -1 \), we have: \[ = 12 + 12i + 3(-1) = 12 + 12i - 3 = 9 + 12i \] ### Step 5: Multiply the denominators Calculating the denominator: \[ (2 - i)(2 + i) = 2^2 - i^2 = 4 - (-1) = 4 + 1 = 5 \] ### Step 6: Combine the results Now we can write the result of the division: \[ \frac{9 + 12i}{5} \] This simplifies to: \[ \frac{9}{5} + \frac{12}{5}i \] ### Step 7: Final answer Thus, the final result is: \[ \frac{9}{5} + \frac{12}{5}i \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)| .

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1=2-i ,\ z_2=-2+i , find : Im(1/(z_1bar(z_2))) .

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

If z_1=2-i ,\ z_2=-2+i , find : R e((z_1z_2)/bar(z_1))

If z_(1) = 2 - i , z_(2) = 1 + i , " find " |(z_(1) + z_(2) + 1)/( z_(1) -z_(2) + 1)|

If z_1, z_2 in C , z_1^2 in R , z_1(z_1^2-3z_2^2)=2 and z_2(3z_1^2-z_2^2)=11 , then the value of z_1^2+z_2^2 is

If z_1=3−2i,z_2=2−i and z_3=2+5i then find z_1+z_2−3z_3