Home
Class 12
MATHS
Find the multiplicative inverse of the f...

Find the multiplicative inverse of the following
`(sin theta,cos theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the multiplicative inverse of the complex number represented by the coordinates \((\sin \theta, \cos \theta)\), we will follow these steps: ### Step 1: Represent the complex number The complex number can be represented as: \[ z = \sin \theta + i \cos \theta \] ### Step 2: Write the formula for the multiplicative inverse The multiplicative inverse of a complex number \(z\) is given by: \[ z^{-1} = \frac{1}{z} \] Thus, we have: \[ z^{-1} = \frac{1}{\sin \theta + i \cos \theta} \] ### Step 3: Rationalize the denominator To simplify this expression, we multiply the numerator and the denominator by the conjugate of the denominator: \[ z^{-1} = \frac{1}{\sin \theta + i \cos \theta} \cdot \frac{\sin \theta - i \cos \theta}{\sin \theta - i \cos \theta} \] This gives us: \[ z^{-1} = \frac{\sin \theta - i \cos \theta}{(\sin \theta + i \cos \theta)(\sin \theta - i \cos \theta)} \] ### Step 4: Simplify the denominator The denominator can be simplified using the formula for the difference of squares: \[ (\sin \theta + i \cos \theta)(\sin \theta - i \cos \theta) = \sin^2 \theta - (i \cos \theta)^2 \] Since \(i^2 = -1\), we have: \[ = \sin^2 \theta - (-\cos^2 \theta) = \sin^2 \theta + \cos^2 \theta \] Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Thus, the denominator simplifies to \(1\). ### Step 5: Write the final result Now, substituting back, we have: \[ z^{-1} = \frac{\sin \theta - i \cos \theta}{1} = \sin \theta - i \cos \theta \] ### Final Answer The multiplicative inverse of \((\sin \theta, \cos \theta)\) is: \[ \sin \theta - i \cos \theta \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the following expressions (i) a cos theta - bsin theta (ii) 7 cos theta + 24 sin theta

Find the equation of the straight line through (a cos theta, b sin theta) perpendicular to the line x/(a cos theta)+ y/(b sin theta) = 1 .

Find the maximum and minimum value of cos^(2) theta- 6 sin theta cos theta + 3 sin^(2) theta + 2 .

Find the distance between the points : (cos theta, sin theta), (sin theta, cos theta)

Evaluate the following: |costheta, -sin theta],[sin theta, cos theta]|

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Eliminate theta from the following equation : x cos theta - y sin theta = a, x sin theta + y cos theta = b

Find the general values of theta from the following equations: sin4theta-sin2theta=cos3theta

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .