Home
Class 12
MATHS
If z = 5 + (3sqrt2) i, find zbarz....

If `z = 5 + (3sqrt2) i`, find `zbarz`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( z \bar{z} \) where \( z = 5 + 3\sqrt{2} i \), we can follow these steps: ### Step 1: Identify the complex number We have: \[ z = 5 + 3\sqrt{2} i \] ### Step 2: Find the conjugate of \( z \) The conjugate of a complex number \( z = x + yi \) is given by \( \bar{z} = x - yi \). Therefore, for our complex number: \[ \bar{z} = 5 - 3\sqrt{2} i \] ### Step 3: Calculate \( z \bar{z} \) We can use the formula: \[ z \bar{z} = (5 + 3\sqrt{2} i)(5 - 3\sqrt{2} i) \] Using the difference of squares: \[ z \bar{z} = 5^2 - (3\sqrt{2} i)^2 \] ### Step 4: Compute \( 5^2 \) and \( (3\sqrt{2} i)^2 \) Calculating \( 5^2 \): \[ 5^2 = 25 \] Calculating \( (3\sqrt{2} i)^2 \): \[ (3\sqrt{2} i)^2 = (3\sqrt{2})^2 (i^2) = 9 \cdot 2 \cdot (-1) = -18 \] ### Step 5: Substitute back into the equation Now substituting back: \[ z \bar{z} = 25 - (-18) = 25 + 18 = 43 \] ### Final Answer Thus, the value of \( z \bar{z} \) is: \[ \boxed{43} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If z=(3-sqrt(7)i) , then find |z^(-1)| .

If z= -3 + sqrt2i , then prove that z^(4) + 5z^(3) + 8z^(2) + 7z + 4 is equal to -29

If z 1 =5+3i and z 2=2−3i Find z 1+z 2 ​

If z=i log(2-sqrt(3)) then cosz

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If z_(1) = 6 + 9i and z_(2) = 5 + 2i then find z_(1)/z_(2)

if z1= 1 +i, z_(2)= 2 -3i and z_(3) = 5+ 2i then find z_(1)-z_(2)+3z_(3)

If z_(1)=3 -2i ,z_(2) = 2-i and z_(3) = 2+ 5i then find z_(1) + z_(2) - 2z_(3)

For z= sqrt3-i , find the principal, value arg(z)