Home
Class 12
MATHS
If z = (cos theta, sin theta), find (z -...

If `z = (cos theta, sin theta)`, find `(z - 1/z)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( z - \frac{1}{z} \) where \( z = \cos \theta + i \sin \theta \), we will follow these steps: ### Step 1: Write down the expression for \( z \) Given: \[ z = \cos \theta + i \sin \theta \] ### Step 2: Find \( \frac{1}{z} \) To find \( \frac{1}{z} \), we multiply the numerator and denominator by the conjugate of \( z \): \[ \frac{1}{z} = \frac{1}{\cos \theta + i \sin \theta} \cdot \frac{\cos \theta - i \sin \theta}{\cos \theta - i \sin \theta} \] This gives: \[ \frac{1}{z} = \frac{\cos \theta - i \sin \theta}{\cos^2 \theta + \sin^2 \theta} \] Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ \frac{1}{z} = \cos \theta - i \sin \theta \] ### Step 3: Substitute \( z \) and \( \frac{1}{z} \) into the expression \( z - \frac{1}{z} \) Now we substitute \( z \) and \( \frac{1}{z} \) into the expression: \[ z - \frac{1}{z} = \left( \cos \theta + i \sin \theta \right) - \left( \cos \theta - i \sin \theta \right) \] ### Step 4: Simplify the expression Simplifying the above expression: \[ z - \frac{1}{z} = \cos \theta + i \sin \theta - \cos \theta + i \sin \theta \] The \( \cos \theta \) terms cancel out: \[ z - \frac{1}{z} = 2i \sin \theta \] ### Final Result Thus, the final result is: \[ z - \frac{1}{z} = 2i \sin \theta \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1 = cos theta + i sin theta and 1,z_1,(z_1)^2,(z_1)^3,.....,(z_1)^(n-1) are vertices of a regular polygon such that (Im(z_1)^2)/(Re Z_1) = (sqrt5-1)/2 , then the value n is

If z=1/(1-cos theta-i sin theta), then Re(z) is a. 0 b. 1/2 c. cot(theta/2) d. 1/2 cot (theta/2)

If z = 1 -cos theta+ isin theta then |z| is equal to

If z = (3)/( 2 + cos theta + I sin theta) , then prove that z lies on the circle.

If A(cos theta, sin theta), B (sin theta, cos theta), C (1, 2) are the vertices of DeltaABC . Find the locus of its centroid if theta varies.

The number of all possible values of theta , where 0 lt theta lt pi , for which the system of equations (y+z)cos 3 theta =(xyz) sin 3 theta ,x sin 3 theta =(2cos3theta)/y+(2sin3theta)/z and (x y z)sin3theta=(y+2z)cos3theta+ysin3theta have a solution (x_0,y_0,z_0) wiith y_0 z_0 !=0 is

if alpha and beta the roots of z+ (1)/(z) =2 (cos theta + I sin theta ) where 0 lt theta lt pi and i=sqrt(-1) show that |alpha - i |= | beta -i|

If z=1-costheta+isintheta,\ t h e n\ |z| is equal to a. 2sin(theta/2) b. 2cos(theta/2) c. 2\ |sin(theta/2)| d. 2\ |cos(theta/2)|

What is the equation of the plane which passes through the z-axis and is perpendicular to the line (x-a)/(cos theta) = (y+2)/(sin theta) = (z-3)/0 ? (A) x+y tan theta=0 (B) y+x tan theta=0 (C) x cos theta-y sin theta=0 (D) x sin theta-y cos theta=0

If z= costheta+isintheta , then the value of (z^(2n)-1)/(z^(2n)+1) (A) i tan n theta (B) tan n theta (C) icot n theta (D) -i tan n theta