Home
Class 12
MATHS
If z = 2-3i, then show that z^2 - 4z + 1...

If `z = 2-3i`, then show that `z^2 - 4z + 13 = 0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=2-3i show that z^2-4z+13=0 and hence find the value of 4z^3-3z^2+169.

If z=2-3i show that z^2-4z+13=0 and hence find the value of 4z^3-3z^2+169.

If z=x+i y , then show that z bar z +2(z+ bar z )+a=0 , where a in R , represents a circle.

If z=2-3i show that z^2=4z+13=0 and hence find the value of 4z^3-3z^2+169.

If z=2−3i then z ^2−4z+13=

If |z-2|=2|z-1| , then show that |z|^(2)=(4)/(3)Re(z) .

If z= -3 + sqrt2i , then prove that z^(4) + 5z^(3) + 8z^(2) + 7z + 4 is equal to -29

If z=1+2i , show that z^(2)-2z+5=0 . Hence find the value of z^(3) +7z^(2)-z+16 .

If z=4 + 3i , then verify that z^(-1)= (bar(z))/(|z|^(2))

If z be any complex number such that |3z-2|+|3z+2|=4 , then show that locus of z is a line-segment.