Home
Class 12
MATHS
If (a + ib)^2 = x + iy find x^2 + y^2...

If `(a + ib)^2 = x + iy` find `x^2 + y^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ (a + ib)^2 = x + iy \] ### Step 1: Expand the left-hand side Using the identity for the square of a binomial, we can expand \((a + ib)^2\): \[ (a + ib)^2 = a^2 + 2ab(i) + (ib)^2 \] ### Step 2: Substitute \(i^2\) Since \(i^2 = -1\), we can substitute this into our equation: \[ (a + ib)^2 = a^2 + 2abi - b^2 \] This can be rearranged to separate the real and imaginary parts: \[ = (a^2 - b^2) + (2ab)i \] ### Step 3: Equate real and imaginary parts Now, we can equate the real and imaginary parts from both sides of the equation: \[ x = a^2 - b^2 \] \[ y = 2ab \] ### Step 4: Find \(x^2 + y^2\) Next, we need to calculate \(x^2 + y^2\): \[ x^2 + y^2 = (a^2 - b^2)^2 + (2ab)^2 \] ### Step 5: Expand \(x^2\) and \(y^2\) Now, we expand both terms: 1. For \(x^2\): \[ (a^2 - b^2)^2 = a^4 - 2a^2b^2 + b^4 \] 2. For \(y^2\): \[ (2ab)^2 = 4a^2b^2 \] ### Step 6: Combine the results Now, we combine the results of \(x^2\) and \(y^2\): \[ x^2 + y^2 = (a^4 - 2a^2b^2 + b^4) + 4a^2b^2 \] This simplifies to: \[ x^2 + y^2 = a^4 + b^4 + 2a^2b^2 \] ### Step 7: Factor the expression Notice that \(a^4 + b^4 + 2a^2b^2\) can be factored as: \[ x^2 + y^2 = (a^2 + b^2)^2 \] ### Final Answer Thus, the final result is: \[ x^2 + y^2 = (a^2 + b^2)^2 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The number x is 2 more than the number y. If the sum of the squares of x and y is 34, find the product of x and y. Given : x -y = 2 and x^2 + y^2 = 34 To find the value of xy.

If 15(2x^(2) - y^(2)) = 7xy , find x : y , if x and y both are positive.

If (x+y)^2=2a x y , find (dy)/(dx)

If ((1+i)/(1-i))^(2) - ((1-i)/(1+i))^(2) = x + iy then find (x,y).

If x^(2) + y^(2) =37 and xy = 6 : find x-y

If (x^2+y^2)^2=x y , find (dy)/(dx)

If (x^2+y^2)^2=x y , find (dy)/(dx)

If 7x - 15y = 4x + y , find the value of x: y . Hence, use componendo and dividendo to find the values of : (i) (9x + 5y)/(9x - 5y) (iI) (3x^(2) + 2y^(2))/(3x^(2) - 2y^(2))

If x+y=4\ a n d\ x y=2, find the values of x^2+y^2

Find the area bounded by the curves x^2 = y , x^2 = -y and y^2 = 4x -3