Home
Class 12
MATHS
If root(3)(a+ib) = xiy then prove that...

If ` root(3)(a+ib) = xiy ` then prove that ` a/x+b/y=4()x^2-y^2) `

Promotional Banner

Similar Questions

Explore conceptually related problems

(x+iy)^(1/3) =(a+ib) then prove that (x/a+y/b)=4(a^2-b^2)

(x+iy)^(1/3) =(a+ib) then prove that (x/a+y/b)=4(a^2-b^2)

If (x+iy) = sqrt((a+ib)/(c+id)) then prove that (x^2 + y^2)^2 = (a^2 + b^2)/(c^2 + d^2)

If (x+yi)^(3)=u + vi , prove that (u)/(x) +(v)/(y) = 4(x^(2)-y^(2))

If a+ib=(x+iy)/(x-iy) prove that a^2+b^2=1 and b/a=(2xy)/(x^2-y^2)

If y= 2^((1)/(log_(x)4)) then prove that x=y^(2) .

If x y=4 , prove that x((dy)/(dx)+y^2)=3y

If (a+ib)/(c+id)=x+i y , prove that(i) (a-ib)/(c-id)=(x-iy) (ii) (a^2+b^2)/(c^2+d^2)=(x^2+y^2)

If (a+ib)/(c+id)=x+i y , prove that(i) (a-ib)/(c-id)=(x-iy) (ii) (a^2+b^2)/(c^2+d^2)=(x^2+y^2)

If (a^(2) + b^(2)) (x^(2) + y^(2)) = (ax + by)^(2) , prove that : (a)/(x) = (b)/(y) .