Home
Class 12
MATHS
Simplify the following complex numbers a...

Simplify the following complex numbers and find their modulus.
`=((2+4i)(1+2i))/((-1-i)(3-i))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the complex number given by the expression \(\frac{(2 + 4i)(1 + 2i)}{(-1 - i)(3 - i)}\) and find its modulus, we can follow these steps: ### Step 1: Multiply the Numerator We start by multiplying the two complex numbers in the numerator: \[ (2 + 4i)(1 + 2i) = 2 \cdot 1 + 2 \cdot 2i + 4i \cdot 1 + 4i \cdot 2i \] Calculating each term: \[ = 2 + 4i + 4i + 8i^2 \] Since \(i^2 = -1\), we have: \[ = 2 + 8(-1) + 8i = 2 - 8 + 8i = -6 + 8i \] ### Step 2: Multiply the Denominator Now, we multiply the two complex numbers in the denominator: \[ (-1 - i)(3 - i) = -1 \cdot 3 + (-1)(-i) - i \cdot 3 - i(-i) \] Calculating each term: \[ = -3 + i - 3i + i^2 \] Again, substituting \(i^2 = -1\): \[ = -3 - 2i - 1 = -4 - 2i \] ### Step 3: Form the Complex Fraction Now we can write our expression as: \[ \frac{-6 + 8i}{-4 - 2i} \] ### Step 4: Rationalize the Denominator To simplify this, we multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{-6 + 8i}{-4 - 2i} \cdot \frac{-4 + 2i}{-4 + 2i} \] Calculating the new numerator: \[ (-6)(-4) + (-6)(2i) + (8i)(-4) + (8i)(2i) = 24 - 12i - 32i + 16i^2 \] Substituting \(i^2 = -1\): \[ = 24 - 44i + 16(-1) = 24 - 16 - 44i = 8 - 44i \] Now calculating the new denominator: \[ (-4)(-4) + (-4)(2i) + (-2i)(-4) + (-2i)(2i) = 16 - 8i + 8i - 4i^2 \] Again substituting \(i^2 = -1\): \[ = 16 + 4 = 20 \] ### Step 5: Final Expression Now we have: \[ \frac{8 - 44i}{20} \] This simplifies to: \[ \frac{8}{20} - \frac{44}{20}i = \frac{2}{5} - \frac{11}{5}i \] ### Step 6: Find the Modulus The modulus of a complex number \(a + bi\) is given by: \[ \sqrt{a^2 + b^2} \] Here, \(a = \frac{2}{5}\) and \(b = -\frac{11}{5}\): \[ \text{Modulus} = \sqrt{\left(\frac{2}{5}\right)^2 + \left(-\frac{11}{5}\right)^2} = \sqrt{\frac{4}{25} + \frac{121}{25}} = \sqrt{\frac{125}{25}} = \sqrt{5} \] ### Final Answer The simplified form of the complex number is \(\frac{2}{5} - \frac{11}{5}i\) and its modulus is \(\sqrt{5}\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the modulus of (2 -3i)/( 4+i)

Find the modulus of ((3+2i)^(2))/(4-3i)

Find the modulus of ((3+2i) (1+i) (2+3i))/((3+4i) (4+5i))

Find the modulus and amplitude of the following complex numbers and hence express them into polar form ((1+i)^(13))/((1-i)^(7))

Find the modulus and amplitude of the following complex numbers and hence express them into polar form ((1+i)(2+i))/((3+i))

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i) .

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i)

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i) .

The modulus of ((1+2i)(3-4i))/((4+3i)(2-3i)) is

Change the following complex numbers into polar form (1+ 3i)/(1-2i)