Home
Class 12
MATHS
Express the complex numbers modulus -amp...

Express the complex numbers modulus -amplitude form
`-1-isqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To express the complex number \(-1 - i\sqrt{3}\) in modulus-amplitude form, we will follow these steps: ### Step 1: Identify the complex number The given complex number is: \[ z = -1 - i\sqrt{3} \] ### Step 2: Calculate the modulus The modulus \(r\) of a complex number \(z = a + bi\) is given by: \[ r = \sqrt{a^2 + b^2} \] Here, \(a = -1\) and \(b = -\sqrt{3}\). Calculating the modulus: \[ r = \sqrt{(-1)^2 + (-\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] ### Step 3: Determine the amplitude (angle) To find the amplitude \(\theta\), we use the relationships: \[ \cos \theta = \frac{a}{r} \quad \text{and} \quad \sin \theta = \frac{b}{r} \] Substituting the values we have: \[ \cos \theta = \frac{-1}{2} \quad \text{and} \quad \sin \theta = \frac{-\sqrt{3}}{2} \] ### Step 4: Identify the quadrant Since both cosine and sine are negative, the angle \(\theta\) must be in the third quadrant. ### Step 5: Find the reference angle The reference angle where \(\cos \theta = \frac{1}{2}\) and \(\sin \theta = \frac{\sqrt{3}}{2}\) is \(60^\circ\). Therefore, in the third quadrant, the angle is: \[ \theta = 180^\circ + 60^\circ = 240^\circ \] ### Step 6: Write the modulus-amplitude form Now we can express the complex number in modulus-amplitude form: \[ z = r(\cos \theta + i\sin \theta) = 2\left(\cos 240^\circ + i\sin 240^\circ\right) \] ### Final Answer Thus, the modulus-amplitude form of the complex number \(-1 - i\sqrt{3}\) is: \[ z = 2\left(\cos 240^\circ + i\sin 240^\circ\right) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Express of the complex number in the form a + i b . (1-i)^4

Express of the complex number in the form a + i b . i^-39

Express of the complex number in the form a + i b . i + i

The amplitude of (-2)/(1+isqrt(3)) is

Express of the complex number in the form a + i b . (1/3+3i)^3

Express of the complex number in the form a + i b . (-2-1/3i)^3

Express in the form of complex number (1-i)^4

Express the given complex number in the form a+ib:(1−i) ^4

Express the given complex number in the form a+ib:i ^(−39)

Express the following complex number in the polar form: (2+6sqrt(3)i)/(5+sqrt(3)i)