Home
Class 12
MATHS
Express in polar form (mod-Amplitude for...

Express in polar form (mod-Amplitude form)
`sqrt3 +i`

Text Solution

AI Generated Solution

The correct Answer is:
To express the complex number \( z = \sqrt{3} + i \) in polar form (modulus-amplitude form), we follow these steps: ### Step 1: Calculate the Modulus The modulus \( r \) of a complex number \( z = a + bi \) is given by the formula: \[ r = \sqrt{a^2 + b^2} \] For our complex number \( z = \sqrt{3} + i \), we have \( a = \sqrt{3} \) and \( b = 1 \). Calculating the modulus: \[ r = \sqrt{(\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \] ### Step 2: Calculate the Argument (Amplitude) The argument \( \theta \) can be found using the tangent function: \[ \tan \theta = \frac{b}{a} \] Substituting the values of \( a \) and \( b \): \[ \tan \theta = \frac{1}{\sqrt{3}} \] To find \( \theta \), we recognize that \( \tan 30^\circ = \frac{1}{\sqrt{3}} \), thus: \[ \theta = 30^\circ \] ### Step 3: Write in Polar Form Now, we can express the complex number in polar form: \[ z = r(\cos \theta + i \sin \theta) \] Substituting the values of \( r \) and \( \theta \): \[ z = 2 \left( \cos 30^\circ + i \sin 30^\circ \right) \] ### Final Result Thus, the polar form of the complex number \( \sqrt{3} + i \) is: \[ z = 2 \left( \cos 30^\circ + i \sin 30^\circ \right) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Write 1-i in polar form.

Express in polar form, hence find the amplitude: z=-1-i.

Express the following in the form a+bi (sqrt3 + 5i) (sqrt3 -5i)^(2) + (-4+ 5i)^(2)

Write the following complex number in polar form : -3 sqrt(2) + 3 sqrt(2) i

Express in the complex form if (5i)((-3i)/5)

Find the modulus and amplitude of the following complex numbers and hence express them into polar form -2+2 sqrt3i

Find the modulus and amplitude of the following complex numbers and hence express them into polar form -1- sqrt3i

The polar form of 1+i sqrt(3) is

Express each of the following in the form a+i b :(-sqrt(3)+\ sqrt(-2))(2sqrt(3)-i)

Express the following in the form a+ bi sqrt((5(2+i))/(2-i))