Home
Class 12
MATHS
Express in polar form (mod-Amplitude for...

Express in polar form (mod-Amplitude form)
`-1 +i`

Text Solution

AI Generated Solution

The correct Answer is:
To express the complex number \(-1 + i\) in polar form, we will follow these steps: ### Step 1: Identify the complex number The given complex number is: \[ z = -1 + i \] ### Step 2: Calculate the modulus (r) The modulus \(r\) of a complex number \(z = x + iy\) is given by: \[ r = \sqrt{x^2 + y^2} \] For our complex number, \(x = -1\) and \(y = 1\): \[ r = \sqrt{(-1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2} \] ### Step 3: Calculate the angle (θ) To find the angle \(\theta\), we use the formulas: \[ \cos \theta = \frac{x}{r} \quad \text{and} \quad \sin \theta = \frac{y}{r} \] Substituting the values we have: \[ \cos \theta = \frac{-1}{\sqrt{2}} \quad \text{and} \quad \sin \theta = \frac{1}{\sqrt{2}} \] ### Step 4: Determine the quadrant Since \(\cos \theta\) is negative and \(\sin \theta\) is positive, the complex number lies in the second quadrant. ### Step 5: Find the angle θ In the second quadrant, the reference angle whose cosine is \(-\frac{1}{\sqrt{2}}\) and sine is \(\frac{1}{\sqrt{2}}\) is \(45^\circ\). Therefore, the angle \(\theta\) in the second quadrant is: \[ \theta = 180^\circ - 45^\circ = 135^\circ \] ### Step 6: Write the polar form Now we can express the complex number in polar form: \[ z = r(\cos \theta + i \sin \theta) \] Substituting \(r\) and \(\theta\): \[ z = \sqrt{2} \left( \cos 135^\circ + i \sin 135^\circ \right) \] ### Final Result Thus, the polar form of the complex number \(-1 + i\) is: \[ z = \sqrt{2} \left( \cos 135^\circ + i \sin 135^\circ \right) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Write 1-i in polar form.

Express in polar form, hence find the amplitude: z=-1-i.

Express in the form of complax number if z= i^5

Express in a complex form if z= i^7

Express in the form of complex number (1-i)^4

write polar form of this complex number -1+i

Express in the complex form if z= i^19

Express of the complex number in the form a + i b . (1-i)^4

Express of the complex number in the form a + i b . (1 - i) - (- 1 + i6)

Express in the form of complex number if z=i^(-39)