Home
Class 12
MATHS
Express in polar form (mod-Amplitude for...

Express in polar form (mod-Amplitude form)
`-2 + 2isqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To express the complex number \(-2 + 2i\sqrt{3}\) in polar form, we will follow these steps: ### Step 1: Identify the complex number The given complex number is: \[ z = -2 + 2i\sqrt{3} \] ### Step 2: Calculate the modulus \(r\) The modulus \(r\) of a complex number \(z = a + bi\) is given by the formula: \[ r = \sqrt{a^2 + b^2} \] Here, \(a = -2\) and \(b = 2\sqrt{3}\). Calculating \(r\): \[ r = \sqrt{(-2)^2 + (2\sqrt{3})^2} = \sqrt{4 + 4 \cdot 3} = \sqrt{4 + 12} = \sqrt{16} = 4 \] ### Step 3: Calculate the angle \(\theta\) The angle \(\theta\) can be found using the formulas: \[ \cos \theta = \frac{a}{r} \quad \text{and} \quad \sin \theta = \frac{b}{r} \] Substituting the values: \[ \cos \theta = \frac{-2}{4} = -\frac{1}{2} \quad \text{and} \quad \sin \theta = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \] ### Step 4: Determine the quadrant Since \(\cos \theta\) is negative and \(\sin \theta\) is positive, the angle \(\theta\) is in the second quadrant. ### Step 5: Find the angle \(\theta\) From trigonometric values, we know: \[ \cos 120^\circ = -\frac{1}{2} \quad \text{and} \quad \sin 120^\circ = \frac{\sqrt{3}}{2} \] Thus, \(\theta = 120^\circ\). ### Step 6: Write the polar form The polar form of the complex number is given by: \[ z = r(\cos \theta + i\sin \theta) \] Substituting the values of \(r\) and \(\theta\): \[ z = 4\left(\cos 120^\circ + i\sin 120^\circ\right) \] ### Final Answer The polar form of the complex number \(-2 + 2i\sqrt{3}\) is: \[ z = 4\left(\cos 120^\circ + i\sin 120^\circ\right) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Write 1-i in polar form.

Express in polar form, hence find the amplitude: z=-1-i.

Express 64 in exponential form with base 2 .

The amplitude of (-2)/(1+isqrt(3)) is

Express in the form of complex number z= (5-3i)(2+i)

Write 1+isqrt(3)\ in polar form.

The polar form of 1+i sqrt(3) is

Express in the complax form if z= (4-3i)(2+i)

Express in the form of complax number z= (2-i)(3+i)

Express 4^(4) in exponent form with base 2.