Home
Class 12
MATHS
Express of the following complex number...

Express of the following complex numbers in modulus amplidutes form. `1-i`

Text Solution

AI Generated Solution

The correct Answer is:
To express the complex number \( z = 1 - i \) in modulus-amplitude (polar) form, we follow these steps: ### Step 1: Identify the complex number The given complex number is: \[ z = 1 - i \] ### Step 2: Calculate the modulus \( r \) The modulus \( r \) of a complex number \( z = a + bi \) is given by: \[ r = \sqrt{a^2 + b^2} \] Here, \( a = 1 \) and \( b = -1 \). Thus, we calculate: \[ r = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \] ### Step 3: Calculate the argument \( \theta \) The argument \( \theta \) can be found using the formulas: \[ \cos \theta = \frac{a}{r}, \quad \sin \theta = \frac{b}{r} \] Substituting the values we have: \[ \cos \theta = \frac{1}{\sqrt{2}}, \quad \sin \theta = \frac{-1}{\sqrt{2}} \] ### Step 4: Determine the angle \( \theta \) The cosine is positive and sine is negative, which places \( \theta \) in the fourth quadrant. The reference angle corresponding to \( \cos \theta = \frac{1}{\sqrt{2}} \) and \( \sin \theta = -\frac{1}{\sqrt{2}} \) is \( 45^\circ \). Therefore, we find: \[ \theta = 360^\circ - 45^\circ = 315^\circ \] ### Step 5: Write the polar form The polar form of the complex number is expressed as: \[ z = r (\cos \theta + i \sin \theta) \] Substituting the values of \( r \) and \( \theta \): \[ z = \sqrt{2} \left( \cos 315^\circ + i \sin 315^\circ \right) \] ### Final Answer Thus, the modulus-amplitude form of the complex number \( 1 - i \) is: \[ z = \sqrt{2} \left( \cos 315^\circ + i \sin 315^\circ \right) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Express in the form of complex number (1-i)^4

Write the following complex numbers in the polar form: \ 1+i

Write the following complex numbers in the polar form: 1-i

Express the following complex numbers in the standard form a+i b :(1-i)/(1+i)

Express the following complex numbers in the standard form a+i b :(1/(1-4i)-2/(1+i))((3-4i)/(5+i))

Write the following complex numbers in the polar form: -1-i

Express the following complex number in the polar form: (1+i)/(1-i)

Express the following complex numbers in the standard form a+i b :((1+i)(1+sqrt(3)i))/(1-i)

Express the following complex numbers in the standard form a+i b :(1+i)(1+2i)

Express the following complex numbers in the standard form a+i b :(3-4i)/((4-2i)(1+i))