Home
Class 12
MATHS
Express in polar form (mod-Amplitude for...

Express in polar form (mod-Amplitude form)
`-sqrt7 + isqrt(21)`

Text Solution

AI Generated Solution

The correct Answer is:
To express the complex number \(-\sqrt{7} + i\sqrt{21}\) in polar form, we will follow these steps: ### Step 1: Identify the complex number Let \( z = -\sqrt{7} + i\sqrt{21} \). ### Step 2: Calculate the modulus \( r \) The modulus \( r \) of a complex number \( z = a + bi \) is given by: \[ r = \sqrt{a^2 + b^2} \] Here, \( a = -\sqrt{7} \) and \( b = \sqrt{21} \). Calculating \( r \): \[ r = \sqrt{(-\sqrt{7})^2 + (\sqrt{21})^2} \] \[ = \sqrt{7 + 21} \] \[ = \sqrt{28} \] \[ = 2\sqrt{7} \] ### Step 3: Calculate the angle \( \theta \) The angle \( \theta \) can be found using the formulas: \[ \cos \theta = \frac{a}{r} \quad \text{and} \quad \sin \theta = \frac{b}{r} \] Substituting the values: \[ \cos \theta = \frac{-\sqrt{7}}{2\sqrt{7}} = -\frac{1}{2} \] \[ \sin \theta = \frac{\sqrt{21}}{2\sqrt{7}} = \frac{\sqrt{3}}{2} \] ### Step 4: Determine the quadrant Since \( \cos \theta \) is negative and \( \sin \theta \) is positive, \( \theta \) is in the second quadrant. ### Step 5: Find the angle \( \theta \) From trigonometric values, we know: \[ \cos 120^\circ = -\frac{1}{2} \quad \text{and} \quad \sin 120^\circ = \frac{\sqrt{3}}{2} \] Thus, \( \theta = 120^\circ \). ### Step 6: Write the polar form The polar form of the complex number is given by: \[ z = r(\cos \theta + i\sin \theta) \] Substituting the values of \( r \) and \( \theta \): \[ z = 2\sqrt{7} \left( \cos 120^\circ + i \sin 120^\circ \right) \] ### Final Answer Thus, the polar form of the complex number \(-\sqrt{7} + i\sqrt{21}\) is: \[ z = 2\sqrt{7} \left( \cos 120^\circ + i \sin 120^\circ \right) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Write 1-i in polar form.

Express in polar form, hence find the amplitude: z=-1-i.

Express in a complex form if z= i^7

Express in the complex form z= (7-i)( 2+i)

Express in the form of a+ib: (sqrt3 - isqrt2)/(2sqrt3-isqrt3)

Express each of the following in the form a+i b :(-sqrt(3)+\ sqrt(-2))(2sqrt(3)-i)

Write 1+isqrt(3)\ in polar form.

The polar form of 1+i sqrt(3) is

Expressed in simplest form, 2sqrt(-50)-3sqrt(-8) is

Express the following expression in the form of a + i b ((3+isqrt(5))(3-isqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-isqrt(2)))