Home
Class 12
MATHS
If sqrt(3)+i= r(cos theta+isin theta), t...

If `sqrt(3)+i= r(cos theta+isin theta)`, then find the value of `theta` in radian measure.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the complex number \( \sqrt{3} + i \) in polar form and find the angle \( \theta \). ### Step-by-Step Solution: 1. **Identify the complex number**: The given complex number is \( z = \sqrt{3} + i \). 2. **Calculate the modulus \( r \)**: The modulus \( r \) of a complex number \( z = a + bi \) is given by: \[ r = \sqrt{a^2 + b^2} \] Here, \( a = \sqrt{3} \) and \( b = 1 \). \[ r = \sqrt{(\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \] 3. **Express in polar form**: We can express \( z \) in polar form as: \[ z = r(\cos \theta + i \sin \theta) \] Substituting the value of \( r \): \[ z = 2(\cos \theta + i \sin \theta) \] 4. **Find \( \cos \theta \) and \( \sin \theta \)**: From the polar form, we can equate: \[ \cos \theta = \frac{\text{Re}(z)}{r} = \frac{\sqrt{3}}{2} \] \[ \sin \theta = \frac{\text{Im}(z)}{r} = \frac{1}{2} \] 5. **Determine \( \theta \)**: We know that: - \( \cos \theta = \frac{\sqrt{3}}{2} \) corresponds to \( \theta = \frac{\pi}{6} \) (or 30 degrees). - \( \sin \theta = \frac{1}{2} \) also corresponds to \( \theta = \frac{\pi}{6} \) (or 30 degrees). Since both sine and cosine are positive, \( \theta \) is in the first quadrant. 6. **Final answer**: Therefore, the value of \( \theta \) in radian measure is: \[ \theta = \frac{\pi}{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a = cos theta + isin theta , then find the value of (1 +a)/(1-a) .

If a cos theta-b sin theta = c, then find the value of a sin theta + b cos theta.

If sin theta =sqrt(3) cos theta, -pi lt theta lt 0 , then the value of theta is

If z = 1 -cos theta+ isin theta then |z| is equal to

If a = cos theta +theta i sin, "then find the value of" (1+a)/(1-a) .

If cosec theta .cos (theta + 54 ^(@)) = 1, find the value of theta

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

Given : 4 sintheta = 3 cos theta , find the value of: cos theta

Given : 4 sintheta = 3 cos theta , find the value of: sin theta