Home
Class 12
MATHS
If z(1)=-1,z(2)=i then find Arg ((z(1))/...

If `z_(1)=-1,z_(2)=i` then find Arg `((z_(1))/(z_(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \(\frac{z_1}{z_2}\) where \(z_1 = -1\) and \(z_2 = i\), we can follow these steps: ### Step 1: Identify the complex numbers We have: - \(z_1 = -1\) - \(z_2 = i\) ### Step 2: Use the formula for the argument of the quotient of two complex numbers The argument of the quotient of two complex numbers is given by: \[ \text{Arg}\left(\frac{z_1}{z_2}\right) = \text{Arg}(z_1) - \text{Arg}(z_2) \] ### Step 3: Find the argument of \(z_1\) For \(z_1 = -1\): - The point \(-1\) lies on the negative real axis. - The argument of \(-1\) is \(\pi\) (or \(180^\circ\)). Thus, \[ \text{Arg}(z_1) = \pi \] ### Step 4: Find the argument of \(z_2\) For \(z_2 = i\): - The point \(i\) lies on the positive imaginary axis. - The argument of \(i\) is \(\frac{\pi}{2}\) (or \(90^\circ\)). Thus, \[ \text{Arg}(z_2) = \frac{\pi}{2} \] ### Step 5: Substitute the arguments into the formula Now we can substitute the values we found into the formula: \[ \text{Arg}\left(\frac{z_1}{z_2}\right) = \text{Arg}(z_1) - \text{Arg}(z_2) = \pi - \frac{\pi}{2} \] ### Step 6: Simplify the expression Now we simplify: \[ \pi - \frac{\pi}{2} = \frac{2\pi}{2} - \frac{\pi}{2} = \frac{\pi}{2} \] ### Final Answer Thus, the argument of \(\frac{z_1}{z_2}\) is: \[ \text{Arg}\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

Let z_(1)=2 -I, z_(2)= -2 +i , find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) , (ii) Im ((1)/(z_(1)bar(z)_(2)))

if z_(1)=1-i and z_(2) = -2 + 4i then find Im((z_(1)z_(2))/barz_(1))

If z_(1) = 1 +iand z_(2) = -3+2i then lm ((z_(1)z_(2))/barz_(1)) is

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

if z_(1) =-1 + 3i and z_(2)= 2 + i then find 2(z_(1) +z_(2))

if z_(1) =2+3i and z_(2) = 1+i then find, |z_(1)+z_(2)|

If |z_(1)|=|z_(2)| and arg (z_(1))+"arg"(z_(2))=0 , then

If z_(1) = 6 + 9i and z_(2) = 5 + 2i then find z_(1)/z_(2)