Home
Class 12
MATHS
Evaluate the integerals. int(x^(3)-2...

Evaluate the integerals.
`int(x^(3)-2x^(2)+3) dx on R `.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int (x^3 - 2x^2 + 3) \, dx \), we will follow these steps: ### Step 1: Write the integral We start with the integral: \[ \int (x^3 - 2x^2 + 3) \, dx \] ### Step 2: Break down the integral Using the linearity of integration, we can separate the integral into three parts: \[ \int (x^3 - 2x^2 + 3) \, dx = \int x^3 \, dx - 2 \int x^2 \, dx + \int 3 \, dx \] ### Step 3: Integrate each term Now we will integrate each term separately using the formula \( \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \). 1. For \( \int x^3 \, dx \): \[ \int x^3 \, dx = \frac{x^{3+1}}{3+1} = \frac{x^4}{4} \] 2. For \( -2 \int x^2 \, dx \): \[ -2 \int x^2 \, dx = -2 \cdot \frac{x^{2+1}}{2+1} = -2 \cdot \frac{x^3}{3} = -\frac{2x^3}{3} \] 3. For \( \int 3 \, dx \): \[ \int 3 \, dx = 3x \] ### Step 4: Combine the results Now we combine all the results from the integrations: \[ \int (x^3 - 2x^2 + 3) \, dx = \frac{x^4}{4} - \frac{2x^3}{3} + 3x + C \] ### Final Answer Thus, the evaluated integral is: \[ \int (x^3 - 2x^2 + 3) \, dx = \frac{x^4}{4} - \frac{2x^3}{3} + 3x + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the integerals. int(2x +1)/(x^(2) +x+1)dx on R.

Evaluate the integerals. int (e ^(log x))/(x ) dx on (0,oo).

Evaluate the integerals. int (1)/(7x+3) dx on I sub R \\{-(3)/(7)}.

Evaluate the following integrals int_1^3(2x+3)dx

Evaluate the following integral : int(2-3x)(3+2x)(1-2x)dx

Evaluate int_(1)^(3)(x^(2)-2x)dx

Evaluate: int(x^3)/((x^2+1)^3)dx

Evaluate: int(x^3)/((x^2+1)^3)dx

Find the integral int(2x-3cosx+e^x)dx

Evaluate: int(x^3+x^2)\ dx