Home
Class 12
MATHS
Evaluate the integerals. int (1)/(7x+...

Evaluate the integerals.
`int (1)/(7x+3) dx on I sub R \\{-(3)/(7)}.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{1}{7x + 3} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1}{7x + 3} \, dx \] To simplify the integration, we can multiply and divide the integrand by 7: \[ \int \frac{1}{7} \cdot \frac{7}{7x + 3} \, dx \] This allows us to factor out \( \frac{1}{7} \): \[ \frac{1}{7} \int \frac{7}{7x + 3} \, dx \] ### Step 2: Substitution Next, we will use substitution. Let: \[ d = 7x + 3 \] Then, differentiating both sides with respect to \( x \), we get: \[ \frac{dt}{dx} = 7 \quad \Rightarrow \quad dt = 7 \, dx \quad \Rightarrow \quad dx = \frac{dt}{7} \] Now we can substitute \( d \) and \( dx \) into the integral: \[ \frac{1}{7} \int \frac{7}{d} \cdot \frac{dt}{7} \] This simplifies to: \[ \frac{1}{7} \int \frac{1}{d} \, dt \] ### Step 3: Integrate Now we can integrate: \[ \frac{1}{7} \ln |d| + C \] Substituting back for \( d \): \[ \frac{1}{7} \ln |7x + 3| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{7x + 3} \, dx = \frac{1}{7} \ln |7x + 3| + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the integrals. (i) int 2x^(7) dx

Evaluate the integerals. int(2x +1)/(x^(2) +x+1)dx on R.

Evaluate the integerals. int(x^(3)-2x^(2)+3) dx on R .

Evaluate the integerals. int (e ^(log x))/(x ) dx on (0,oo).

int(1)/((7x-2)^(2))dx

Evaluate int(x-1)(x-3)\dx

Evaluate int5e^(7x)\dx

Evaluate the following integrals : (i) int x^(15)dx (ii) int x^(-3//2)dx (iii) int(3x^(-7)+x^(-1))dx (iv) int(sqrt(x)+(1)/sqrt(x))^(2)dx (v) int(x+(1)/(x))dx (vi) int((a)/(x^(2))+(b)/(x))dx (a and b are constant)

Evaluate int_(1)^(3)x^(3)dx

Evaluate: int(x^7)/(x+1)\ dx