Home
Class 12
MATHS
Evaluate the integerals. int (e ^(lo...

Evaluate the integerals.
`int (e ^(log x))/(x ) dx on (0,oo).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int_0^\infty \frac{e^{\log x}}{x} \, dx, \] we can follow these steps: ### Step 1: Simplify the integrand We know that \( e^{\log x} = x \). Therefore, we can rewrite the integrand: \[ \frac{e^{\log x}}{x} = \frac{x}{x} = 1. \] ### Step 2: Rewrite the integral Now, substituting this back into the integral, we have: \[ \int_0^\infty 1 \, dx. \] ### Step 3: Evaluate the integral The integral of 1 over the interval from 0 to infinity is: \[ \int_0^\infty 1 \, dx = \lim_{b \to \infty} \int_0^b 1 \, dx = \lim_{b \to \infty} [x]_0^b = \lim_{b \to \infty} (b - 0) = \infty. \] ### Conclusion Thus, the integral diverges, and we conclude that: \[ \int_0^\infty \frac{e^{\log x}}{x} \, dx = \infty. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the integerals. int(2x +1)/(x^(2) +x+1)dx on R.

int (1+log_e x)/x dx

Evaluate the integerals. int(x^(3)-2x^(2)+3) dx on R .

int((log _(e)x)^(3))/(x)dx

Evaluate : int (e^("log x "))/(x) " dx "

Evaluate int (sin(log x))/(x)dx

Evaluate : int ("cos (log x)")/(x) " dx "

If a gt0 and a!=1 evaluate the following integrals: (i) int e^(xlog_(e)a)dx (ii) int e^(alog_(e)x)dx (iii) int e^x a^xdx (iv) int 2^(log_(e)x)dx

If a >0 and a!=1 evaluate the following integrals: (i) inte^(x\ (log)_e a)\ dx\ (ii) inte^(a\ (log)_e x)\ dx

Evaluate : int x^n log x dx.