Home
Class 10
MATHS
If A and B are two complementery angle, ...

If A and B are two complementery angle, then `sin A*cosB+cosA*sinB`=____________.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are complementary angles, then (a) sinA=cosB (b) cosA=sinB (c) tanA=cotB (d) secA=cos e c\ B

sin(A-B)=sinA cos B-cosA sinB

If A,B and C are the angle of a triangle show that (i) |{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0. (ii) |{:(-1+CcosB,cosC+cosB,cosB),(cosC+cosA,-1+cosA,cosB),(-1+cosB,-1+cosA,-1):}|=0.

If A=B=45^(@) , then justify sin(A+B)=sinA cosB+cosA sinB.

If n is an odd positive interger, then ((cosA+cosB)/(sinA-sinB))^(n)+((sinA+sinB)/(cosA-cosB))^(n)=

If n is an odd positive interger, then ((cosA+cosB)/(sinA-sinB))^(n)+((sinA+sinB)/(cosA-cosB))^(n)=

i) If sinA+sinB=sqrt(3)(cosB-cosA) , prove that: sin3A+sin3B=0 ii) If A,B and C are in arithmetic progression, then prove that: cotB=(sinA-sinc)/(cosC-cosA)