Home
Class 11
BIOLOGY
e.coded by E.C.2.7.1.2 in modern classif...

e.coded by E.C.2.7.1.2 in modern classification

A

Hexokinase

B

Aldolase

C

Enolase

D

Glucose 6 - phosphotransferase

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question regarding the enzyme coded by E.C. 2.7.1.2 in modern classification, we will follow these steps: ### Step-by-Step Solution: 1. **Understand the EC Number**: The EC number 2.7.1.2 indicates a specific enzyme classification. The first digit (2) signifies that it is a transferase, which is an enzyme that transfers a functional group from one molecule to another. 2. **Break Down the EC Number**: - The second digit (7) indicates that it transfers a phosphate group. - The third digit (1) specifies that it acts on alcohols. - The fourth digit (2) identifies the specific enzyme within this category. 3. **Identify the Enzyme**: - We need to find which enzyme corresponds to the EC number 2.7.1.2. - The options given are: - Hexokinase (E.C. 2.7.1.1) - Aldolase (E.C. 4.1.2.13) - Inolase (E.C. 4.2.1.11) - Glucose 6-phosphate transferase (E.C. 2.7.1.2) 4. **Match the Options**: - Hexokinase is coded by 2.7.1.1, which does not match. - Aldolase is coded by 4.1.2.13, which does not match. - Inolase is coded by 4.2.1.11, which does not match. - Glucose 6-phosphate transferase is coded by 2.7.1.2, which matches perfectly. 5. **Conclusion**: The enzyme that corresponds to E.C. 2.7.1.2 is glucose 6-phosphate transferase, also known as glucokinase. ### Final Answer: The enzyme coded by E.C. 2.7.1.2 is **Glucose 6-phosphate transferase**. ---
Promotional Banner

Topper's Solved these Questions

  • BIOMOLECULES

    AAKASH SERIES|Exercise EXERCISE - I (Enzymes Inhibition)|10 Videos
  • BIOMOLECULES

    AAKASH SERIES|Exercise EXERCISE - I (Classification and Nomenclature of Enzymes)|24 Videos
  • BIOMOLECULES

    AAKASH SERIES|Exercise EXERCISE - I (Properties & Nature of enzyme Action)|11 Videos
  • BIOLOGICAL CLASSIFICATION

    AAKASH SERIES|Exercise EXERCISE-III (Previous AIPMT/NEET Question)|37 Videos
  • CELL CYCLE AND CELL DIVISION

    AAKASH SERIES|Exercise Exercise-III|18 Videos

Similar Questions

Explore conceptually related problems

Write the order of the differential equation associated with the primitive y=C_1+C_2e^x+C_3e^(-2x)+C_4,\ w h e r e\ C_1, C_2, C _3,\ C_4 are arbitrary constants.

Write the order of the differential equation associated with the primitive y=C_1+C_2e^x+C_3e^(-2x+C_4),\ w h e r e\ C_1, C_2, C-3,\ C_4 are arbitrary constants.

Two numbers are randomly selected and multiplied. Consider two events E_1 and E_2 defined as E_1 : Their product is divisible by 5 and E_2 Unit's place in their product is 5 Which of the following statement(s) is/are correct? (a) E_1 is twice as likely to occur as E_2 . (b) E_1 and E_2 are disjoint. (c) P( E_1 / E_2 )=1/4 (d) P( E_1 / E_2 )=1

If e_1a n d\ e_2 are respectively the eccentricities of the ellipse (x^2)/(18)+(y^2)/4=1 and the hyperbola (x^2)/9-(y^2)/4=1, then the relation between e_1a n d\ e_2 is a. 2e_1 ^2+e_2 ^2=3 b. e_1 ^2+2e_2^ 2=3 c. 2e_1^ 2+e_2 ^2=3 d. e_1 ^2+3e_2 ^2=2

The general solution of the differential equation (d^2y)/dx^2=e^(-3x) is (A) y=9e^(-3x)+C_1x+C_2 (B) y=-3e^(-3x)+C_1x+C_2 (C) y=3e^(-3x)+C_1x+C_2 (D) y=e^(-3x)/9+C_1x+C_2

The normal at an end of a latus rectum of the ellipse x^2/a^2 + y^2/b^2 = 1 passes through an end of the minor axis if (A) e^4+e^2=1 (B) e^3+e^2=1 (C) e^2+e=1 (D) e^3+e=1

If E is a point on side C A of an equilateral triangle A B C such that B E_|_C A , then A B^2+B C^2+C A^2= 2\ B E^2 (b) 3\ B E^2 (c) 4\ B E^2 (d) 6\ B E^2

A variable point P on the ellipse of eccentricity e is joined to the foci S and S' . The eccentricity of the locus of incentre of the triangle PSS' is (A) sqrt((2e)/(1+e)) (B) sqrt(e/(1+e)) (C) sqrt((1-e)/(1+e)) (D) e/(2(1+e))

Let C be the centre, BCB the minor axis and S the focus (ae, 0) for the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1. B ' S is produced to meet the ellipse again in the point P. If CP makes an angle varphi with the positive direction of x-axis then tanvarphi is equal to ((a-e^2)^(3/2))/e (b) ((1-e^2)^(3/2))/(2e) ((1-e^2)^(1/2))/2 (d) ((1-e^2)^(-1/2))/e

E^(c-) of some elements are given as : {:(I_(2)+2e^(-)rarr 2I^(c-),,,,E^(c-)=0.54V),(MnO_(4)^(c-)+8H^(o+)+5e^(-)rarr Mn^(2+)+4H_(2)O,,,,E^(c-)=1.52V),(Fe^(3+)+e^(-)rarr Fe^(2+),,,,E^(c-)=0.77V),(Sn^(4+)+2e^(-)rarr Sn^(2+),,,,E^(c-)=0.1V):} Select the strongest oxidant and weakest oxidant among these elements.