Home
Class 12
PHYSICS
(A): A medium must have elasticity to su...

(A): A medium must have elasticity to support wave motion.
(R): Restoring force responsible for wave motion results due to elasticity of the medium.

A

Both 'A' and 'R' are true and 'R' is the correct, explanation of 'A'.

B

Both 'A' and 'R' are true and 'R' is not the correct explanation of 'A'

C

A' is true and 'R' is false

D

Both 'A' and 'R' are false

Text Solution

AI Generated Solution

The correct Answer is:
To analyze the assertion and reason given in the question, we will break down the concepts step by step. ### Step 1: Understanding the Assertion **Assertion (A)** states that "A medium must have elasticity to support wave motion." - **Explanation**: For any wave to propagate through a medium, the medium must be able to return to its original shape after being disturbed. This property is known as elasticity. Without elasticity, the medium would not be able to support the oscillations that characterize wave motion. ### Step 2: Understanding the Reason **Reason (R)** states that "Restoring force responsible for wave motion results due to elasticity of the medium." - **Explanation**: When a wave travels through a medium, particles of that medium are displaced from their equilibrium positions. The restoring force, which is the force that brings the particles back to their equilibrium positions, arises due to the elastic properties of the medium. For example, in a stretched spring, when you pull it and release it, the spring returns to its original shape due to the restoring force provided by its elasticity. ### Step 3: Connecting Assertion and Reason - The assertion (A) and reason (R) are closely related. The elasticity of a medium is what allows for the existence of a restoring force, which is essential for wave motion. Therefore, the reason provides a valid explanation for the assertion. ### Step 4: Conclusion Based on the analysis: - Both the assertion (A) and the reason (R) are true. - The reason (R) is a correct explanation of the assertion (A). ### Final Answer Both the assertion and reason are true, and the reason is the correct explanation of the assertion. ---
Promotional Banner

Topper's Solved these Questions

  • WAVES

    AAKASH SERIES|Exercise EXERCISE-II (Wave Equations & Basics :)|19 Videos
  • WAVES

    AAKASH SERIES|Exercise EXERCISE-II (Strings (Speed of a travelling wave:))|23 Videos
  • WAVES

    AAKASH SERIES|Exercise EXERCISE-IA (Matching )|4 Videos
  • WAVE OPTICS

    AAKASH SERIES|Exercise PROBLEMS (LEVEL - II)|33 Videos
  • WAVES OPTICS

    AAKASH SERIES|Exercise EXERCISE -III (POLARISITION)|10 Videos

Similar Questions

Explore conceptually related problems

Which properties of a medium are responsible for propagation of wave through it ?

A: Speed of light in a medium is independent of the motion of the source relative to the medium. R: Speed of light in a medium depends on the motion of the observer relative to the medium.

A transverse wave travels along the Z-axis. The particles of the medium must move

Assertion : Speed of mechanical wave in the medium depends on the velocity of source, relative to an observer at rest. Reason : Speed of mechanical wave is independent of the elastic and other properties such as mass density of the medium.

(A) : Relative to an observer at rest in a medium the speed of a mechanical wave in that medium (1) depends only on elastic and other properties (such as mass density) of the medium. It does not depend on the velocity of the source. (B): For an observer moving with velocity v_(0) relative to the medium, the speed of a wave is obviously different from v and is given by v+-v_(0)

Many interesting wave phenomenon in nature cannot just be described by a single wave, instead one must analyze complex wave forms in terms of a combinations of many travelling waves. To analyze such wave combinations, we make use of the principle of superposition which states that if two or more travelling waves are moving through a medium and combine at a given point, the resultant displacement of the medium at that point is sum of the displacement of individual waves. Two pulses travelling on the same string are described by y_(1)=(5)/((3x-4t)^(2)+2) and y_(2)=(-5)/((3x+4t-6)^(2)+2) The time when the two waves cancel everywhere

Many interesting wave phenomenon in nature cannot just be described by a single wave, instead one must analyze complex wave forms in terms of a combinations of many travelling waves. To analyze such wave combinations, we make use of the principle of superposition which states that if two or more travelling waves are moving through a medium and combine at a given point, the resultant displacement of the medium at that point is sum of the displacement of individual waves. Two pulses travelling on the same string are described by y_(1)=(5)/((3x-4t)^(2)+2) and y_(2)=(-5)/((3x+4t-6)^(2)+2) The point where the two waves always cancel

Many interesting wave phenomenon in nature cannot just be described by a single wave, instead one must analyze complex wave forms in terms of a combinations of many travelling waves. To analyze such wave combinations, we make use of the principle of superposition which states that if two or more travelling waves are moving through a medium and combine at a given point, the resultant displacement of the medium at that point is sum of the displacement of individual waves. Two pulses travelling on the same string are described by y_(1)=(5)/((3x-4t)^(2)+2) and y_(2)=(-5)/((3x+4t-6)^(2)+2) The direction in which each pulse is travelling

(A): In a longitudinal stationary wave a displacement node coincides with a pressure anti node. (R): Restoring force is maximum at node and minimum at anti node.

A : If a wave moving in a rarer medium , gets reflected at the boundary of a denser medium , then it encounter a sudden change in phaso or pi . R : If a wave propagating in a denser medium , gets reflected from rarer medium , then there will be no abrupt phase change .

AAKASH SERIES-WAVES-EXERCISE-IB (Assertion (A) & Reason (R) Type Questions)
  1. Assertion : The frequencies of incident, reflected and refracted beam ...

    Text Solution

    |

  2. (A): Only longitudinal waves can propagate through a gas. (R): Gase...

    Text Solution

    |

  3. (A): A medium must have elasticity to support wave motion. (R): Rest...

    Text Solution

    |

  4. (A): Both transverse and longitudinal mechanical waves can travel thro...

    Text Solution

    |

  5. Statement-1 : Mechanical transverse waves cannot be generated in gaseo...

    Text Solution

    |

  6. (A): In a progressive wave particle velocity and wave velocity are sam...

    Text Solution

    |

  7. (A): Wave velocity and particle velocity for transverse wave are mutua...

    Text Solution

    |

  8. (A): If in the presence of two independent audio signals, no beats are...

    Text Solution

    |

  9. (A): When a wave goes from one medium to other, average power transmit...

    Text Solution

    |

  10. (A): If two waves of same amplitude, produce a resultant wave of same ...

    Text Solution

    |

  11. Assertion : On reflection from a rigid boundary there takes place a co...

    Text Solution

    |

  12. (A) : The wave length of sound waves increases when they are refracted...

    Text Solution

    |

  13. Statement I:In a progressive logitudinal wave, the amplitude of the wa...

    Text Solution

    |

  14. (A): Two sound waves of frequencies 400 Hz and 200 Hz can propagate wi...

    Text Solution

    |

  15. Statement 1: Sound waves can not propagate through vacuum but light wa...

    Text Solution

    |

  16. (A): The velocity of sound changes as we go up in the atmosphere. (R...

    Text Solution

    |

  17. Assertion : The flash of lightening is seen before the sound of thund...

    Text Solution

    |

  18. (A): A wind is different from the sound wave in air. (R): The wind i...

    Text Solution

    |

  19. (A): The velocity of sound in hydrogen gas is more than the velocity o...

    Text Solution

    |

  20. Assertion : Sound would travel faster on a not summer day than on a co...

    Text Solution

    |